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#% Chapitre 14 5
Produit scalaire dans le plan

I. Approche géométrique

1. Norme d’un vecteur

Définition 1:
Soient u un vecteur et A et B deux points d'un plan tels que le vecteur AB soit un représentant du vecteur u .
La norme du vecteur u , notée ” u ‘

, est égale a la longueur du segment [AB].

@® Propriété 1 :
. _— —> ~ P y N . b - x_)
Soit (O; 1; ) unrepére orthonormé d'un plan. Dans ce repére, on considére le vecteur u | “ |.

u
Lanorme du vecteur u est obtenue grace ala formule :

[71-r

& Démonstration :

Propriété a démontrer: «Dans unrepere orthonormé,

= [rm2iyo2
‘u ” = xu + yu »
D’apres la définition, la norme du vecteur u est égale a la longueur du segment [AB]

”;” _ \/(XB_xA)Z""(J’B—J/A)Z — /x;2+y;2 carZ:EdOHC (;Z) = (;g:;ﬁ)

u

Donc, dans un repére orthonormé, HE ” =, /x;2 + y;z [ ]
# Exemple 1:

-
Calculons la norme du vecteur u :
5 EE

1. Undesreprésentants du vecteur u estle vecteur AB

2. Calcul des coordonnées du vecteur AB .
Comme A(1;1) et B(5;4) alors:

= |

1
] — (XB— XA 5-1 4 — (4
ue ] = =
’ ! A8 (yB—yA) (4—1) (3)'D°ncu (3)
] —
21 ! 3. Calcul de la norme du vecteur u :
!
1+ J —
! o ! || = 2oy = VEe=vas=s
!
] I . I I I I I
1 2 3 4 5 6 7 8 9 10

La norme du vecteur u est égale a 5.
2. Produit scalaire de deux vecteurs

Définition 2:
Soient u et v deux vecteurs non nuls d'un plan et (u U ) I'angle formé par ces deux vecteurs. Le produit
scalaire, noté « u - v », du vecteur u et du vecteur v est donné par :

- 5 > - =
u-vz“u xcos(u,v)

—

X |fv
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7 Exemple 2:
7 p

— (4 —
Soient u (O) etv (g) deux vecteurs du plan, calculons leur produit scalaire.

il

V| =vEeF=avz e (uV])=0=a5=7

uv = HZ x| 7] x cos(u, ¥)
- 4x3\/§xcos(z) _ va Y2~
4 2

Le produit scalaire entre les vecteurs u et v vaut 12.

3. Projection d’'un vecteur

@® Propriété 2 :
% Soient O, A et B trois points d'un plan. Si H est le projeté orthogonal de B sur (OA), alors :

OA-OB =0A -OH

& Démonstration :
Propriété a démontrer: «Si H est le projeté orthogonal de B sur (OA), alors OA -OB = OA -OH »
On doit démontrer une implication : H est le projeté orthogonal de B sur (OA) = OA -OB =0A -OH

Supposons que le point H est le projeté orthogonal de B sur (OA), alors :

OA-OB = 5X(O—H>+ﬁ ) d’apres la relation de Chasles
- OA-OH+0A-HE - OA-OH +|0A| « || xcos[0A, 7E)
= 671)51)+H6A7 X ﬁ xcos(g) = 671)51)+H6A7 X ﬁ x 0
- OA-OH
Donc Si H est le projeté orthogonal de B sur (OA),alorsﬁ-ﬁzﬁ-ﬁf |

Dans un repere orthonormé, la propriété ci-dessus peut étre ramenée a :

@® Propriété 3 :
Soient O, A et B trois points d'un plan. Si H est le projeté orthogonal de B sur (OA), alors :

OA -OB = 0Ax OH

OA et OH désigne une distance algébrique (qui peut étre positive ou négative en fonction du repére).

# Exemple 3:

On reprend I'exemple précédent. On pose U =0Aetv =0B.
1. On projette le vecteur OB surle vecteur OA
2. On détermina la norme du vecteur O/ (ici, on a H ﬁ H =3)

3. On utilise ensuite la propriété 3. :

U-v = OAxOH = 4x3 = 12

Le produit scalaire entre les vecteurs u et v vaut 12.
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II. Propriétés du produit scalaire

:o\, roprlete 4 :

u ¥ et w sont trois vecteurs et k est un réel.
Le produit scalaire est dit bilinéaire, c’est a dire qu’il vérifie les conditions suivantes :

‘V=Uv-U
( ( )=t (u-v)
u - =u-v+u-w
& Démonstration :
1. Commutativité :
u-v = ||V xcos(u v) = ”v x|u xcos(—(u,u))
= u xcos(v u) = v-u
|
2. Linéarité: Montrons que (k;) U =kx (; 7) Pour cela, procédons par disjonction des cas :
eSik>0: (kZ);) = “ku x || v xcos(ku,v) = kx|lluf|lx|v xcos(u,v)
= kX(u-v)
eSik<0: (k;)j = ”ku x|[v xcos(ku,v) = —kx|u| x|v x(—cos(u,v))
= kxllu|lx|v xcos(u,v) = kx(u-u)
On utilisera la méme méthode pour montrer que u (kv) = kX(u-v) |
3. Distributivité : Cette propriété est admise. |

III. Approche analytique

1. Produit scalaire et coordonnées de vecteurs

On se place dans un repére orthonormé du plan (0; 7; 7).

@® Propriété 5 :
v

—[x— — [x= - -
Soient u ( ”) et v ( ) deux vecteurs du plan, le produit scalaire de u et de v est le nombre réel

u v

défini par :
u-v=x,x +y;y7
& Démonstration :
Propriété a démontrer: «u - v =xp X+ Y-y .

u-v

(x;x?+y;x7))-(x7x?+y7x?)
oz T g =T 7) <7 <) o) o
7T [ i xj 7

= Xy XXp X 1+x~xy—»xz JHypxxpxj- z+y—»xy~

7)oz =7)

X xx;XIIl ¥ +X XYy ¥ 0+ yo xxp x0+yn xJ’;’XII] ¥

— X X— X — X V— X = — X— — 1) —
X X X l+yu V3 1 xuxv+yuyv
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” Exemple 4:
7 p

— 1 —
Soient u (1) etv (;) deux vecteurs du plan, calculons leur produit scalaire :

u-v = XoXety-yr = 1x3+1x2 = 5

—_ —
Le produit scalaire entre les vecteurs u et v vaut5.

A Remarque :

—_ —

) 5 =12 =2 =y,
* u-u=x-°+y-"=|u| ,onnoteraparfois ||u || =u
u u

¢ Sil'un des deux vecteurs u ou v estnul, alors le produit scalaire est nul

- — — —
¢ Laréciproque est fausse : u .v =0 n'implique pas nécessairement # =0ou v =0

2. Produit scalaire et orthogonalité

Définition 3:

| Les vecteurs E et @ sont dits orthogonaux si les droites (AB) et (CD) sont perpendiculaires

\ J

@® Propriété 6 :
% Deux vecteurs non nuls sont orthogonaux si et seulement si leur produit scalaire est nul.

ulv < wu-v=0

-
\ J

&% Démonstration :
Propriété a démontrer: «ulv < u-v =0»
On doit démontrer une équivalence. Pour ce faire, nous allons démontrer I'implication puis la réciproque :

¢ Implication (=) : On suppose que les deux vecteurs, non nuls, # et v sont orthogonaux.

—_ —> A —_ —> A —
(u,v)zE — cos(u,v):cos(—) = 0 = “u x

2

— —_ —> —_ —
v”xcos(u,v):O — u-v =0

Donc le produit scalaire de u et v est nul.

e Réciproque (<) : On suppose que le produit scalaire des deux vecteurs, non nuls, U et v estnul.

u-rv = 0 < Hu x||v| xcos(u,v) = 0

Un produit de facteur est nul si et seulement si un de ses facteurs est nul.

[«] = o [v] = o costu,v) = 0

= = - — T - — b4

u = 0 y = 0 (u,v) = E+2kn ou (u,v) = —§+2k7[
avec ke ”Z

Impossible car ; # U Impossible car 7 # 6)

—_ —_
Donc les vecteurs u et v sont orthogonaux.

=)
<
Il
(=)
|

On vient de démontrer I'implication puis la réciproque donc I'équivalence est vraie: ulv <<

# Exemple 5:
‘s . —(3) =(-1} ., —[0 .
On considere les trois vecteurs u 9] vl |etw ) Ces vecteurs sont-ils orthogonaux?
2
- 3 - -
S UV =XoXo+ YRy =3x(=1)+2x 5= 0 donc u et v sont orthogonaux
cU-w= Xp X+ yoyoe = 3x0+2x(-1)=-2 donc ¥ et w ne sont pas orthogonaux
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