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❆ Chapitre 14 ❆

Produit scalaire dans le plan

I. Approche géométrique

1. Norme d’un vecteur

Soient
−→
u un vecteur et A et B deux points d’un plan tels que le vecteur

−−→
AB soit un représentant du vecteur

−→
u .

La norme du vecteur
−→
u , notée

∥∥∥−→u ∥∥∥ , est égale à la longueur du segment [AB ].

Définition 1:

Soit (O;−→ı ;−→ȷ ) un repère orthonormé d’un plan. Dans ce repère, on considère le vecteur
−→
u

(
x−→

u
y−→

u

)
.

La norme du vecteur
−→
u est obtenue grâce a la formule :∥∥∥−→u ∥∥∥ =

√
x−→

u
2 + y−→

u
2

Propriété 1 :

Propriété à démontrer : « Dans un repère orthonormé,
∥∥∥−→u ∥∥∥ =

√
x−→

u
2 + y−→

u
2 »

D’après la définition, la norme du vecteur
−→
u est égale à la longueur du segment [AB ]

∥∥∥−→u ∥∥∥ =
√

(xB −xA)2 + (
yB − y A

)2 =
√

x−→
u

2 + y−→
u

2 car
−→
u =−−→

AB donc

(
x−→

u
y−→

u

)
=

(
xB −xA

yB − y A

)

Donc , dans un repère orthonormé,
∥∥∥−→u ∥∥∥ =

√
x−→

u
2 + y−→

u
2 ■

Démonstration :

Calculons la norme du vecteur
−→
u :

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

A

B

−−→
AB =

−→
u

−→
u

x−→
u

y−→
u

1. Un des représentants du vecteur
−→
u est le vecteur

−−→
AB

2. Calcul des coordonnées du vecteur
−−→
AB .

Comme A(1;1) et B(5;4) alors :
−−→
AB

(
xB −xA

yB − y A

)
=

(
5−1
4−1

)
=

(
4
3

)
. Donc

−→
u

(
4
3

)
3. Calcul de la norme du vecteur

−→
u :∥∥∥−→u ∥∥∥ =

√
x−→

u
2 + y−→

u
2 =

√
42 +32 =p

25 = 5

La norme du vecteur
−→
u est égale à 5.

Exemple 1:

2. Produit scalaire de deux vecteurs

Soient
−→
u et

−→
v deux vecteurs non nuls d’un plan et

(−→
u ,

−→
v

)
l’angle formé par ces deux vecteurs. Le produit

scalaire, noté «
−→
u ·−→v », du vecteur

−→
u et du vecteur

−→
v est donné par :

−→
u ·−→v =

∥∥∥−→u ∥∥∥ ×
∥∥∥−→v ∥∥∥ ×cos

(−→
u ,

−→
v

)

Définition 2:
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Soient
−→
u

(
4
0

)
et

−→
v

(
3
3

)
deux vecteurs du plan, calculons leur produit scalaire.

•
∥∥∥−→u ∥∥∥ = 4 •

∥∥∥−→v ∥∥∥ =
p

32 +32 = 3
p

2 •
(−→

u ,
−→
v

)
= θ = 45◦ = π

4

−→
u ·−→v =

∥∥∥−→u ∥∥∥ ×
∥∥∥−→v ∥∥∥ ×cos

(−→
u ,

−→
v

)
= 4×3

p
2×cos

(π
4

)
= 12

p
2×

p
2

2
= 12

Le produit scalaire entre les vecteurs
−→
u et

−→
v vaut 12.

1 2 3 4

1

2

3

0

−→
u

−→
v

θ = π

4

Exemple 2:

3. Projection d’un vecteur

Soient O, A et B trois points d’un plan. Si H est le projeté orthogonal de B sur (O A), alors :

−−→
O A ·−−→OB =−−→

O A ·−−→OH

Propriété 2 :

Propriété à démontrer : « Si H est le projeté orthogonal de B sur (O A), alors
−−→
O A ·−−→OB =−−→

O A ·−−→OH »

On doit démontrer une implication : H est le projeté orthogonal de B sur (O A) =⇒−−→
O A ·−−→OB =−−→

O A ·−−→OH

Supposons que le point H est le projeté orthogonal de B sur (O A), alors :

−−→
O A ·−−→OB = −−→

O A ·
(−−→
OH +−−→

HB
)

d’après la relation de Chasles

= −−→
O A ·−−→OH +−−→

O A ·−−→HB = −−→
O A ·−−→OH +

∥∥∥−−→O A
∥∥∥ ×

∥∥∥−−→HB
∥∥∥ ×cos

(−−→
O A ,

−−→
HB

)
= −−→

O A ·−−→OH +
∥∥∥−−→O A

∥∥∥ ×
∥∥∥−−→HB

∥∥∥ ×cos
(π

2

)
= −−→

O A ·−−→OH +
∥∥∥−−→O A

∥∥∥ ×
∥∥∥−−→HB

∥∥∥ ×0

= −−→
O A ·−−→OH

Donc Si H est le projeté orthogonal de B sur (O A), alors
−−→
O A ·−−→OB =−−→

O A ·−−→OH ■

Démonstration :

Dans un repère orthonormé, la propriété ci-dessus peut être ramenée à :

Soient O, A et B trois points d’un plan. Si H est le projeté orthogonal de B sur (O A), alors :

−−→
O A ·−−→OB =O A×OH

O A et OH désigne une distance algébrique (qui peut être positive ou négative en fonction du repère).

Propriété 3 :

On reprend l’exemple précédent. On pose
−→
u =−−→

O A et
−→
v =−−→

OB .

1. On projette le vecteur
−−→
OB sur le vecteur

−−→
O A

2. On détermina la norme du vecteur
−−→
OH (ici, on a

∥∥∥−−→OH
∥∥∥ = 3)

3. On utilise ensuite la propriété 3. :

−→
u ·−→v = O A×OH = 4×3 = 12

Le produit scalaire entre les vecteurs
−→
u et

−→
v vaut 12. 1. 2. 3. 4.

1.

2.

3.

0O

A
−→
u

B

−→
v

H

Exemple 3:
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II. Propriétés du produit scalaire

−→
u ,

−→
v et

−→
w sont trois vecteurs et k est un réel.

Le produit scalaire est dit bilinéaire, c’est à dire qu’il vérifie les conditions suivantes :

•
−→
u ·−→v =−→

v ·−→u
•

(
k
−→
u

)
·−→v =−→

u ·
(
k
−→
v

)
= k ×

(−→
u ·−→v

)
•
−→
u · (

−→
v +−→

w ) =−→
u ·−→v +−→

u ·−→w

Propriété 4 :

1. Commutativité :

−→
u ·−→v =

∥∥∥−→u ∥∥∥ ×
∥∥∥−→v ∥∥∥ ×cos

(−→
u ,

−→
v

)
=

∥∥∥−→v ∥∥∥ ×
∥∥∥−→u ∥∥∥ ×cos

(
−

(−→
v ,

−→
u

))
=

∥∥∥−→v ∥∥∥ ×
∥∥∥−→u ∥∥∥ ×cos

(−→
v ,

−→
u

)
= −→

v ·−→u
■

2. Linéarité : Montrons que
(
k
−→
u

)
·−→v = k ×

(−→
u ·−→v

)
. Pour cela, procédons par disjonction des cas :

• Si k > 0 :
(
k
−→
u

)
·−→v =

∥∥∥k
−→
u

∥∥∥ ×
∥∥∥−→v ∥∥∥ ×cos

(
k
−→
u ,

−→
v

)
= k ×

∥∥∥−→u ∥∥∥ ×
∥∥∥−→v ∥∥∥ ×cos

(−→
u ,

−→
v

)
= k ×

(−→
u ·−→v

)
• Si k < 0 :

(
k
−→
u

)
·−→v =

∥∥∥k
−→
u

∥∥∥ ×
∥∥∥−→v ∥∥∥ ×cos

(
k
−→
u ,

−→
v

)
= −k ×

∥∥∥−→u ∥∥∥ ×
∥∥∥−→v ∥∥∥ ×

(
−cos

(−→
u ,

−→
v

))
= k ×

∥∥∥−→u ∥∥∥ ×
∥∥∥−→v ∥∥∥ ×cos

(−→
u ,

−→
v

)
= k ×

(−→
u ·−→v

)
On utilisera la même méthode pour montrer que

−→
u ·

(
k
−→
v

)
= k ×

(−→
u ·−→v

)
■

3. Distributivité : Cette propriété est admise. ■

Démonstration :

III. Approche analytique

1. Produit scalaire et coordonnées de vecteurs

On se place dans un repère orthonormé du plan (O;−→ı ;−→ȷ ).

Soient
−→
u

(
x−→

u
y−→

u

)
et

−→
v

(
x−→

v
y−→

v

)
deux vecteurs du plan, le produit scalaire de

−→
u et de

−→
v est le nombre réel

défini par : −→
u ·−→v = x−→

u
x−→

v
+ y−→

u
y−→

v

Propriété 5 :

Propriété à démontrer : «
−→
u ·−→v = x−→

u
x−→

v
+ y−→

u
y−→

v
» .

−→
u ·−→v =

(
x−→

u
×−→

i + y−→
u
×−→

j
)
·
(
x−→

v
×−→

i + y−→
v
×−→

j
)

=
(
x−→

u
×−→

i
)
·
(
x−→

v
×−→

i
)
+

(
x−→

u
×−→

i
)
·
(

y−→
v
×−→

j
)
+

(
y−→

u
×−→

j
)
·
(
x−→

v
×−→

i
)
+

(
y−→

u
×−→

j
)
·
(

y−→
v
×−→

j
)

= x−→
u
×x−→

v
×−→

i ·−→i +x−→
u
× y−→

v
×−→

i ·−→j + y−→
u
×x−→

v
×−→

j ·−→i + y−→
u
× y−→

v
×−→

j ·−→j

= x−→
u
×x−→

v
×||−→i ||2 +x−→

u
× y−→

v
×0+ y−→

u
×x−→

v
×0+ y−→

u
× y−→

v
×||−→j ||2

= x−→
u
×x−→

v
×1+ y−→

u
× y−→

v
×1 = x−→

u
x−→

v
+ y−→

u
y−→

v ■

Démonstration :
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Soient
−→
u

(
1
1

)
et

−→
v

(
3
2

)
deux vecteurs du plan, calculons leur produit scalaire :

−→
u ·−→v = x−→

u
x−→

v
+ y−→

u
y−→

v
= 1×3+1×2 = 5

Le produit scalaire entre les vecteurs
−→
u et

−→
v vaut 5.

Exemple 4:

•
−→
u ·−→u = x−→

u
2 + y−→

u
2 =

∥∥∥−→u ∥∥∥2
, on notera parfois ||−→u ||2 =−→

u 2

• Si l’un des deux vecteurs
−→
u ou

−→
v est nul, alors le produit scalaire est nul

• La réciproque est fausse :
−→
u .

−→
v = 0 n’implique pas nécessairement

−→
u = 0 ou

−→
v = 0

Remarque :

2. Produit scalaire et orthogonalité

Les vecteurs
−−→
AB et

−−→
C D sont dits orthogonaux si les droites (AB) et (C D) sont perpendiculaires

Définition 3:

Deux vecteurs non nuls sont orthogonaux si et seulement si leur produit scalaire est nul.

−→
u ⊥−→

v ⇐⇒ −→
u ·−→v = 0

Propriété 6 :

Propriété à démontrer : «
−→
u ⊥−→

v ⇐⇒ −→
u ·−→v = 0 »

On doit démontrer une équivalence. Pour ce faire, nous allons démontrer l’implication puis la réciproque :

• Implication (⇒) : On suppose que les deux vecteurs, non nuls,
−→
u et

−→
v sont orthogonaux.

(
−→
u ,

−→
v ) = π

2
⇐⇒ cos(

−→
u ,

−→
v ) = cos

(π
2

)
= 0 ⇐⇒

∥∥∥−→u ∥∥∥ ×
∥∥∥−→v ∥∥∥ ×cos(

−→
u ,

−→
v ) = 0 ⇐⇒ −→

u ·−→v = 0

Donc le produit scalaire de
−→
u et

−→
v est nul.

• Réciproque (⇐) : On suppose que le produit scalaire des deux vecteurs, non nuls,
−→
u et

−→
v est nul.

−→
u ·−→v = 0 ⇐⇒

∥∥∥−→u ∥∥∥ ×
∥∥∥−→v ∥∥∥ ×cos(

−→
u ,

−→
v ) = 0

Un produit de facteur est nul si et seulement si un de ses facteurs est nul.∥∥∥−→u ∥∥∥ = 0

−→
u = 0

Impossible car
−→
u ̸= −→

0 .

∥∥∥−→v ∥∥∥ = 0

−→
v = 0

Impossible car
−→
v ̸= −→

0 .

cos(
−→
u ,

−→
v ) = 0

(
−→
u ,

−→
v ) = π

2
+2kπ ou (

−→
u ,

−→
v ) = −π

2
+2kπ

avec k ∈Z

Donc les vecteurs
−→
u et

−→
v sont orthogonaux.

On vient de démontrer l’implication puis la réciproque donc l’équivalence est vraie :
−→
u ⊥−→

v ⇐⇒ −→
u ·−→v = 0 ■

Démonstration :

On considère les trois vecteurs
−→
u

(
3
2

)
,
−→
v

(−1
3
2

)
et

−→
w

(
0
−1

)
. Ces vecteurs sont-ils orthogonaux ?

•
−→
u ·−→v = x−→

u
x−→

v
+ y−→

u
y−→

v
= 3× (−1)+2× 3

2
= 0 donc

−→
u et

−→
v sont orthogonaux

•
−→
u ·−→w = x−→

u
x−→

w
+ y−→

u
y−→

w
= 3×0+2× (−1) =−2 donc

−→
u et

−→
w ne sont pas orthogonaux

Exemple 5:
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