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#% Chapitre 15 =
Suites geometrlques

I. Définition d’'une suite géométrique

1. Définition par récurrence

Définition 1:
Une suite est dite géométrique lorsqu’on passe d'un terme au suivant en multipliant & chaque fois un méme
nombre g appelé raison de la suite.

Une suite géométrique est définie par la donnée de son premier terme (généralement 1y ou u,) et la rela-

tion de récurrence :
{ up = kaveckeR

Up+1 =Un X (g

# Exemple 1:

Au 1° janvier 2018, Bruno place un capital de 1500 €a intéréts composés sur un livret au taux de 2% par an. On note
Uy, le capital sur le compte au 1¢" janvier (2008 + n).

Le premier terme de la suite (u,) est uy = 1500.

On passe d'un terme au suivant en multipliant par 1,02, c’est-a-dire : u,+1 = u, x 1,02.

(u,,) est donc une suite géométrique de raison 1,02.

-\@’- Méthode 1 :

. . . P P Un+1
Pour démontrer qu’'une suite est géométrique, on calcule le rapport entre deux termes consécutifs :

Up
Si ce rapport est constant, quelles que soient les valeurs de n, c’est a dire que sa valeur ne dépend pas de n, on peut
en conclure que la suite (u,) est gé¢ométrique.

# Exemple 2:
Soit la suite (u,,) définie par u,, = 2" pour tout entier naturel 7.
Un+1 2! 2" x2! DR :
— = o = on = 2. Donc (u,) est une suite géométrique de raison g = 2.
Up

2. Expression explicite d'une suite géométrique

@® Propriété 1 :
§ Si (uy,) est une suite géométrique de premier terme 1 et de raison q.

e pourtousneN,ona: Up=1upxq"

e pourtousnetpdeN,ona: up=upxq" P

& Démonstration :

* Si(uy) est géométrique de raison g, pour passer de 1y a u,, on multiplie 7 fois par la raison, c’est a dire :

Unp = Ugxgxgx--xq = uUxq"
—_——

n fois
* Pourtousnet pdeN,ona: u,=ugxq" etu,=uyxq”

n n
Un _ Uoxq _ 9~ _ q"" Un = upxq"P

Up up x qP qv
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” Exemple 3:
7 p

Considérons la suite géométrique (u,,) définies pour n € N de raison g et telle que u4 =8 et u7 =512.
1. Commencons par déterminer la raison de cette suite : 2. Ensuite calculons le premier terme de cette suite :

u; 512 _ 4
Onau7=u4><q7‘4,d’ot1q3=u7= - —64 Onau4—u34><q8
4 _ _° _
Doncupg=— =—=—.
Donc g = V/64 = 4. 0T AT 32

1
On a donc pour tout n €N, u, = 2 x 4™,

II. Propriétés des suites géométriques

1. Sens de variation de la suite (g")

@® Propriété 2 :
Soit (u,) une suite de terme général u, = g" alors :
* Si g <0 alors (u4;,) n’est pas monotone. * Si0< g <1 alors (uy) est strictement décroissante.
* Sig=0o0uqg=1alors (u4,) est constante. e Si g > 1 alors (u,) est strictement croissante.

& Démonstration :
On pourra raisonner par disjonction des cas puis revenir a la définition du sens de variation d'une suite.

Exemple 4:
7 p

Soit la suite (u,) définie par u, = 2", pour tout entier naturel n. On sait que (u,) est une suite de terme général g"
avec g = 2 > 1 donc c’est une suite croissante.

2. Sens de variation d’une suite géométrique

@® Propriété 3 :
On considére (u,) une suite géométrique de raison g et de premier terme .
* Si ug est positive, la suite (u,) ala méme sens de variation que la suite (g™).

¢ Si ug est négatif, le sens de variation de la suite (u;) est le contraire de celui de la suite (q").

&% Démonstration :
On pourra remarquer que multiplier par un nombre négatif change le signe des inégalités et arriver a la conclusion.

Exemple 5:
p

Soit (1) la suite géométrique de raison 2 et de premier terme 1y = —4.
D’apres I'exemple précédent, on sait que la suite de terme générale 2" est croissante. De plus le premier terme de la
suite u est négatif. On peut donc en conclure que la suite (u,,) est décroissante.

3. Représentation graphique

# Exemple 6:
Soit la suite (u,,) définie par u,, = 2", pour tout entier naturel n. On calcul les
premiers termes de cette suite : 30. 1
25. As
n|0|1]2|3|4]|5 20. 44
u, | 1124|8116 | 32 15.
As
Sur le graphique ci dessous, les points A;, correspondent a la suite (u,,). 5 Ay Al 42
Une suite géométrique est représentée par des points qui suivent une évo- »

: ) $51.152.253.354.455.
lution exponentielle.
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