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❆ Chapitre 15 ❆

Suites géométriques

I. Définition d’une suite géométrique

1. Définition par récurrence

Une suite est dite géométrique lorsqu’on passe d’un terme au suivant en multipliant à chaque fois un même
nombre q appelé raison de la suite.

Une suite géométrique est définie par la donnée de son premier terme (généralement u0 ou u1) et la rela-
tion de récurrence : {

u0 = k avec k ∈R
un+1 = un ×q

Définition 1:

Au 1er janvier 2018, Bruno place un capital de 1500 (à intérêts composés sur un livret au taux de 2% par an. On note
un le capital sur le compte au 1er janvier (2008+n).
Le premier terme de la suite (un) est u0 = 1500.
On passe d’un terme au suivant en multipliant par 1,02 , c’est-à-dire : un+1 = un ×1,02.
(un) est donc une suite géométrique de raison 1,02.

Exemple 1:

Pour démontrer qu’une suite est géométrique, on calcule le rapport entre deux termes consécutifs :
un+1

un
Si ce rapport est constant, quelles que soient les valeurs de n, c’est à dire que sa valeur ne dépend pas de n, on peut
en conclure que la suite (un) est géométrique.

Méthode 1 :

Soit la suite (un) définie par un = 2n pour tout entier naturel n.
un+1

un
= 2n+1

2n = 2n ×21

2n = 2. Donc (un) est une suite géométrique de raison q = 2.

Exemple 2:

2. Expression explicite d’une suite géométrique

Si (un) est une suite géométrique de premier terme u0 et de raison q .

• pour tous n ∈N, on a : un = u0 ×qn

• pour tous n et p deN, on a : un = up ×qn−p

Propriété 1 :

• Si (un) est géométrique de raison q , pour passer de u0 à un , on multiplie n fois par la raison, c’est à dire :

un = u0 ×q ×q ×·· ·×q︸ ︷︷ ︸
n fois

= u0 ×qn

• Pour tous n et p deN, on a : un = u0 ×qn et up = u0 ×q p

un

up
= u0 ×qn

u0 ×q p = qn

q p = qn−p ⇐⇒ un = up ×qn−p

Démonstration :
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Considérons la suite géométrique (un) définies pour n ∈N de raison q et telle que u4 = 8 et u7 = 512.
1. Commençons par déterminer la raison de cette suite :

On a u7 = u4 ×q7−4, d’où q3 = u7

u4
= 512

84
= 64

Donc q = 3p64 = 4.

2. Ensuite calculons le premier terme de cette suite :
On a u4 = u0 ×q4

Donc u0 = u4

q4 = 8

44 = 1

32
.

On a donc pour tout n ∈N, un = 1

32
×4n .

Exemple 3:

II. Propriétés des suites géométriques

1. Sens de variation de la suite (qn)

Soit (un) une suite de terme général un = qn alors :
• Si q < 0 alors (un) n’est pas monotone.

• Si q = 0 ou q = 1 alors (un) est constante.

• Si 0 < q < 1 alors (un) est strictement décroissante.

• Si q > 1 alors (un) est strictement croissante.

Propriété 2 :

On pourra raisonner par disjonction des cas puis revenir à la définition du sens de variation d’une suite.

Démonstration :

Soit la suite (un) définie par un = 2n , pour tout entier naturel n. On sait que (un) est une suite de terme général qn

avec q = 2 > 1 donc c’est une suite croissante.

Exemple 4:

2. Sens de variation d’une suite géométrique

On considère (un) une suite géométrique de raison q et de premier terme u0.

• Si u0 est positive, la suite (un) à la même sens de variation que la suite (qn).

• Si u0 est négatif, le sens de variation de la suite (un) est le contraire de celui de la suite (qn).

Propriété 3 :

On pourra remarquer que multiplier par un nombre négatif change le signe des inégalités et arriver à la conclusion.

Démonstration :

Soit (un) la suite géométrique de raison 2 et de premier terme u0 =−4.
D’après l’exemple précédent, on sait que la suite de terme générale 2n est croissante. De plus le premier terme de la
suite u est négatif. On peut donc en conclure que la suite (un) est décroissante.

Exemple 5:

3. Représentation graphique

Soit la suite (un) définie par un = 2n , pour tout entier naturel n. On calcul les
premiers termes de cette suite :

n 0 1 2 3 4 5

un 1 2 4 8 16 32

Sur le graphique ci dessous, les points An correspondent à la suite (un).
Une suite géométrique est représentée par des points qui suivent une évo-
lution exponentielle.
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Exemple 6:
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