Terminale Spécialité Mathématiques Année 2020 - 2021

% Chapitre 16 5

Calcul intégral

I. Aspect graphique

1. Unité d’aire

Définition 1:

| Dans un repere orthogonal (O; 6}, 6}), on appelle unité d’aire (notée u.a.) 'aire du rectangle OIK]J.

1.5

\ 4

1.2 1.4 1.6

2. Notion d’intégrale : cas d’'une fonction continue et positive

En 1696, Jacques Bernoulli reprend le mot latin «integer », déja utilisé au X IV ° siecle, pour désigner le calcul inté-
gral. A cette époque, on partait de l'équation de la courbe pour calculer l'aire sous la courbe, c’est a dire du « bord »de la
surface a la surface entiére (intégrale). Au milieu du X IX€ siecle, les sciences sociales reprennent le mot pour exprimer
l'idée qu'une personne s'integre a un groupe

Définition 2:

Soit f une fonction continue et positive sur un intervalle [a; b], €r sa courbe représentative dans un repere
orthogonal.

Le domaine situé sous la courbe € estle domaine situé entre €, 'axe des abscisses et les droites d’équations
x=aetx=>b.

N
F - = - -

Définition 3:
Soit f une fonction définie et positive sur un intervalle [a; b].
Lintégrale de a a b de la fonction f estI'aire, en unités d’aires, du domaine situé sous sa courbe C.

b
Onlanote f f(x)dx (selit «intégralede aa b de f» ou«sommede aabde f»).
a

Cette notation est due au mathématicien allemand Gottfried Wilhelm von Leibniz (1646; 1716). Ce symbole fait
penser a un "S" allongé et s'explique par le fait que l'intégral est égal a une aire calculée comme somme infinie d'autres
aires. Plus tard, un second mathématicien allemand, Bernhard Riemann(1826; 1866) établit une théorie aboutie du
calcul intégral.
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Exemple 1:
7 p

Soit f la fonction définie sur [1;3] par: f(x) =x+1

Tracer de la fonction f dans un repére  Découpage de la figure en forme
orthogonal, de la zone correspondant a  dont on peut calculer l'aire : I et
I'ensemble de définition de la fonction. L.

4.
Calcul des aires :
3 3
. [x+1dx = L+D
1
2x%x2
2. = 2x2+4

6 unité d’aire

2

H e eeee----
o i -
w I

‘0 4. ‘0

3. Encadrement de I'intégrale d’'une fonction

Soit une fonction f continue, positive et monotone sur un intervalle [a; b].
—-a

On partage 'intervalle [a; b] en n sous-intervalles de méme amplitude [ =

Sur un sous-intervalle ]x; x + [[, 'aire sous la courbe est comprise
entre I'aire de deux rectangles :

¢ I'un de dimension [ et f(x) qui a pour aire I x f(x); flx+1)

¢ l'autre de dimension / et f(x+ ) qui a pour aire [ x f(x+[).

Sur l'intervalle [a;b], 'aire sous la courbe est comprise entre la
somme des n rectangles "inférieurs" et la somme des n rectangles
"supérieurs”.

Voici un algorithme écrit en langage naturel et en langage Python per-

mettant d’obtenir un tel encadrement : b
Langage naturel 1 def integrale(n,a,b):
L—(b-a)ln 2 1=(b-a)/n
X—a 3 x=a
m— 0 4 m=
—0 s p=
P 6 for i in range(0,n):

PouriallantdeO0an—-1

7 m=m+1*x**
m<—m+Lx f(x) \ —
X—x+1L . p=p+Lkxks
p—p+Lxf(x) 10 return('m =",m,"p =",p)
Afficher metp
# Exemple 2:

Avec le logiciel Edupython, on programme I'algorithme pour la fonction f(x) = x? (voir ci-dessus).

On exécute plusieurs fois le programme pour obtenir un encadrement de 'intégrale de la fonction carré sur [1;2].
En augmentant le nombre de sous-intervalles,la précision du calcul s’améliore car I'encadrement formé de rectangles
inférieurs et supérieurs se resserre autour de la courbe.

1 >>> integrale( 1 >>> integrale( 1 >>> integrale(
2 (m = 2. , p = 2. 2 (m = 2. , P = 2. 2 (m = 2. ,p =

3 >>> 3 >>> 3 >>>

2
Avec cette méthode, on arrive a déterminer de plus en plus précisément la valeur de f x*dx
1
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II. Primitives et intégrale

1. Théoréeme fondamentale

@® Propriété1 :

% Si f est une fonction continue et positive sur un intervalle [a; b], alors la fonction F définie sur [a; b] par

X
F(x) = f f(t)dt est dérivable sur [a; b] et a pour dérivée f.
a

4 Démonstration :

Propriété a démontrer : « Si f est une fonction continue et positive sur un intervalle [a; b], alors la fonction F définie

X

sur [a; b] par F(x) = f f () dt est dérivable sur [a; b] et a pour dérivée f.»

a
Démonstration dans le cas ou f est strictement croissante :
* On considere deux réels x et x + h de l'intervalle [a; b] avec h > 0.
F(x+h)-F(x)
W

On veut démontrer que lim
Rt flx+

x+h x £ i
F(x+h)—F(x):f f(t)dt—f f(t)dt=f f(ndt. €5 BEEEEEE S El/ J|F
a a x /

On a représenté ci-dessus, la courbe de la fonction f (en bleu).

Cette différence est égale al'aire de la surface colorée en rouge. A B

Elle est comprise entre les aires des rectangles ABFE et ABHG. v g # < x4 h 79

Or, Aireaprg = h x f(x) et Aireapyg = h x f(x + h).

Comme f est croissante sur [a;b],ona:hx f(x) < F(x+h)—F(x)<hx f(x+h)

F(x+h) -F
Puisque 7> 0,0na:f(x) < w < f(x+h).
Comme f est continue sur [a; b], }lin?) fx+h) = f(x).
F(x+h) -F
D’apres le théoréme des gendarmes, }lin(l] w = f(x).
¢ Dans le cas ol h <0, la démonstration est analogue (les encadrements sont inversés).
On en déduit que F'(x) = f(x). [ ]
2. Calcul d’'une intégrale
@® Propriété 2 :
Soit f une fonction continue sur l'intervalle [a; b] et F une primitive de f sur R, alors :
b
f f(x)dx=F(b)—-F(a)
a
& Démonstration :
b
Propriété a démontrer : « f fx)dx=F()—-F(a)»
a
X
La dérivée de la fonction G définie sur [a; b] par G(x) = f f(t)dt estlafonction f.
Donc G est une primitive de f sur [a; b]. ¢
Si F est une primitive de f alors pour tout x de [a; b], on a G(x) = F(x) + k, k€ R.
a
De plus, G(a) :f f()dt=0et G(a) = F(a) + k donc F(a) = —k etdonc k = —F(a).
a
b
OrG(b):[ f)dt=F) +k=F()—-F(a). |
a
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Définition 4:

Soit f une fonction continue sur un intervalle I, a et b deux réels de I et F une primitive de f sur [a; b].

b
On appelle intégrale de f sur [a; D] la différence F(b) — F(a) noté f f)dx.
a

M Remarque :

La définition est étendue a des fonctions de signe quelconque. Pour une fonction f négative sur [a; b], on peut écrire :

b b
f fx)dx = FMb)-Fa = -(Gb)-Ga) = —f —f(x)dx
a a

ol G est une primitive de la fonction — f. Dans ce cas, 'intégrale de la fonction f sur [a; b] est égale a 'opposé de
I'aire comprise entre I’axe des abscisse et la courbe représentative de f sur [a; b].

b
On écrit :f fx)dx = [F(x)]Z =F(b)—-F(a)
a

III. Propriétés des intégrales

1. Relation de Chasles

@ Propriété 3 :
Soit f une fonction continue sur un intervalle I, trois réels a, b et
cde I, alors:

b c b
f f(x)dxzf f(x)dx+[ fx)dx
a a c

L

& Démonstration :

N4

b c b
Propriété a démontrer : « f fdx = f f)dx+ f f)dx»
a a Cc

c b b
f f(x)dx+f f(x)dx=F(c)-F(a)+ F(b) - F(c) = F(b) - F(a) =f fx)dx ]
a Cc a
# Exemple 3:
3 ) 54 s
Simplifions I'expression : A = [ 4x+e* dx +f 4x+e* dx
- 3

3 ) 54 , 54 )
A:f 4x+e* dx+f 4x+e* dx:f 4x+e* dx
-4 3 -4

Propriété 4 :

®
§ Soit f une fonction continue sur un intervalle I = [a; b], alors :

b a
f f(x)dxz—f fl)dx
a b

&% Démonstration :

N4

b a
Propriété a démontrer : « f fx)dx=- f f)dx»
a b

b a a b a
f f(x)dx+f f(x)dx:f fx)dx=0. Doncf f(x)dx:—f f)dx ]
a b a a b
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2. Linéarité

@® Propriété 5 :
Soit f et g deux fonctions continues sur l'intervalle [a; b], a et f deux nombres réels, alors :

b b b
f(af+ﬁg)(x)dx=af f(x)dx+ﬁf g(x)dx
a a a

& Démonstration :
N4
Propriété a démontrer : « Linéarité de I'intégrale »

On applique les propriétés sur les primitives : kF est une primitive de kf et F + G est une primitive de f + g

3. Positivité et ordre

@® Propriété 6 : b
§ e Si, pourtout x € [a;b] : f(x) >0 alorsf fx)dx >0.
a

b b
¢ Si, pour tout x € [a; D] : f(x) > g(x) alorsf fx)dx 2[ g(x)dx.

& Démonstration :
N
b
* Propriété a démontrer : « Si f(x) > 0 alors f fx)dx>0»
a

Par définition, lorsque f est positive, 'intégrale de f est une aire donc est positive.

b b
¢ Propriété a démontrer : « Si f(x) > g(x) alors f fx)dx > f g(x)dx»
a a
b
Si f(x) > g(x)alors f(x) — g(x) > 0. Donc en appliquant la propriété ci dessus, on a: f fx)—gx)dx >0.
b b b b ¢
Par linéarité, onaf fx) dx—f g(x) dx}Odonc/ fx dx}f g(x)dx.
a a a a

Exemple 4:
7 p

On représente la courbe représentative de la fonction f et de la fonction
8, Noté €y et g, sur I'intervalle [a; b].

)

On remarque que sur cet intervalle, g(x) > f(x) et que 'aire du domaine

b b
enrouge ( f fx) dx) est bien plus petit que celui en bleu ( / g(x) dx)
a a

Qe-
Sipe==

0

IV. Aire du domaine compris entre deux courbes

@® Propriété 7 : A
Soient f et g deux fonctions continues et positives sur [a; b], de
courbes représentatives <€f et 6y telles que f < g sur [a; b]. No-
tons «f I'aire du domaine compris entre Cr et 6y, alors

4

S

:

b
af:f [g(x) - f(2)] dx

v

(=}
Qe-
Specedecccas

\
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V. Valeur moyenne

Définition 5:

Soit f une fonction continue sur I'intervalle [a; b] (a < b).La valeur moyenne de f sur [a; b] est le réel

1 b
p:mfa fx)dx

M Remarque :

Dans le cas ol f est positive et continue sur [a; b], la valeur moyenne de y= f (x)
f entre a et b représente la hauteur du rectangle construit sur 'intervalle

la;b].

Laire du rectangle ABCD est égale, en u.a., a 'aire du domaine coloré car D C

d’apres la définition :

b
ub—a) =f fde.
a

A(a';'O)o i B(b;O)

# Exemple 5:

Pour connaitre la valeur moyenne p de ¢ — sin(#) sur [0;7], on calcule :

1 (" 1 —cos(m)+cos(0) 2
w= —f sin(#)dt = — [-cos(x)]j = Zcos(m) + cos©) _ —.
7 Jo 7 7 7
A Remarque :
* En mathématiques, si f est une fonction non constante, la valeur moyenne de f sur [a; D] est la valeur de la
fonction constante ayant la méme intégrale que f sur [a; b].

¢ En physique, si f est une fonction qui représente une intensité variable, la valeur moyenne de f entre deux
instants f; et f; est I'intensité du courant constant transportant la méme quantité d’électricité que le courant
variable entre t; et t,.

VI. Intégration par partie

@® Propriété 8 :
Soit u et v deux fonctions dérivables sur [a; b]. Alors, on a:

b b
fu'(x)v(x)dxz[u(x)v(x)]Z—f u(x)v'(x)dx
a

a

' Démonstration : Exigible en fin de terminale

b
Propriété a démonter : « f
a

b
U (X)v(x)dx = [u(x)v(x)]Z —f u(x)v' (x)dx»

a
uv est dérivable sur [a;b] etona: (uv) =uv'v+uv'.
Les fonctions uv’, u'v et (uv)’ sont continues sur [a; b], donc :

b b
[u(x) v(x)]2 f (uv) (x)dx = f (u'v+uv'(x)dx
a a

b b
fu’(x)v(x))dx+f u(x)v'(x))dx
a

a

b b
Doncf u' (x)v(x) dx = [wx) v(x)]8 —f u(x)v'(x)dx [ ]
a a
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'@/' Méthode 1 : Calculer une intégrale en intégrant par parties
Calculer les intégrales suivantes :

A b 62
A:fzxsinxdx B:fzxzcosxdx C:f Inxdx
0 0 1

s

2
A= f xsinxdx

0
On pose : v(x) = x donc Viix)=1
u'(x) =sinx donc u(x) = —cosx

Ce choix n’est pas anodin! L'idée est ici de ne plus laisser de facteur x dans 'expression qu’il restera a intégrer.
Ainsi, en intégrant par parties, ona:

fiu’(x)v(x)dx = [u(x)v(x)]og —ffu(x)v’(x)dx
0 0

b/

e 2 e %
= [—cosxxx]o2 —f —cosxx1ldx = [—xcosx]é +f cosxdx
0 0
b4 b4 . z
= —Ecos(§)+0005(0)+[smx]02

. (T .
= sm(—)—smo = 1
2

b/

2 9
B= x“cosxdx
0

On pose : v(x) = x*> donc v'(x) =2x
u'(x) = cosx donc u(x) =sinx
Ainsi, en intégrant par parties, ona:

b/ b/

f u' (x)v(x)dx [u(x)u(x)]§ —fi u(x)v'(x)dx
0 0

b/

I
3
[sinx x x*]¢ —f sinx x 2xdx
0

s

b4 7
= [xzsmx]o2 —2/ xsinxdx
0

Or, dans le terme de droite, on reconnait I'intégrale A de la question précédente qui a été calculée par parties. 11
s’agit ici d'une double intégration par parties. On a donc :

T\ (MY, 2
B:(—) sm(—)—O sin0—-2x1=—-2
2 2 4

62
sz Inxdx
1

1
On pose : v(x) =Inx donc v'(x) = —
X
u'(x) =1donc u(x) =x
Ainsi, en intégrant par parties, ona:

92 ez
f u' (x)v(x)dx [w(x) w015 - f u(x)v'(x)dx
0 0

eZ

: 1
= [xlnx]gz —f xx —dx
0

X
92 2
= ezln(ez)—llnl—f 1dx = e2x21ne+[x]8
0
= e?x2-e’+1 = e’+1
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