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f Chapitre 16 f

Calcul intégral

I. Aspect graphique

1. Unité d’aire

Dans un repère orthogonal
(
O;

−→
OI ,

−→
O J

)
, on appelle unité d’aire (notée u.a.) l’aire du rectangle OI K J .

Définition 1:
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2. Notion d’intégrale : cas d’une fonction continue et positive

En 1696, Jacques Bernoulli reprend le mot latin « integer », déjà utilisé au X IV e siècle, pour désigner le calcul inté-
gral. A cette époque, on partait de l’équation de la courbe pour calculer l’aire sous la courbe, c’est à dire du « bord »de la
surface à la surface entière (intégrale). Au milieu du X I X e siècle, les sciences sociales reprennent le mot pour exprimer
l’idée qu’une personne s’intègre à un groupe

Soit f une fonction continue et positive sur un intervalle [a;b], C f sa courbe représentative dans un repère
orthogonal.
Le domaine situé sous la courbe C f est le domaine situé entre C f , l’axe des abscisses et les droites d’équations
x = a et x = b.

Définition 2:

1

1

2

3

0a b

Soit f une fonction définie et positive sur un intervalle [a;b].
L’intégrale de a à b de la fonction f est l’aire, en unités d’aires, du domaine situé sous sa courbe C.

On la note
∫ b

a
f (x)dx (se lit « intégrale de a à b de f » ou « somme de a à b de f »).

Définition 3:

Cette notation est due au mathématicien allemand Gottfried Wilhelm von Leibniz (1646 ; 1716). Ce symbole fait
penser à un "S" allongé et s’explique par le fait que l’intégral est égal à une aire calculée comme somme infinie d’autres
aires. Plus tard, un second mathématicien allemand, Bernhard Riemann(1826 ; 1866) établit une théorie aboutie du
calcul intégral.
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Soit f la fonction définie sur [1;3] par : f (x) = x +1

Tracer de la fonction f dans un repère
orthogonal, de la zone correspondant à
l’ensemble de définition de la fonction.

1. 2. 3. 4.

1.

2.

3.

4.

0

C f

Découpage de la figure en forme
dont on peut calculer l’aire : I1 et
I2.

1. 2. 3. 4.

1.

2.

3.

4.

0

C f

I1

I2

Calcul des aires :∫ 3

1
x +1dx = I1 + I2

= 2×2+ 2×2

2
= 6 unité d’aire

Exemple 1:

3. Encadrement de l’intégrale d’une fonction

Soit une fonction f continue, positive et monotone sur un intervalle [a;b].

On partage l’intervalle [a;b] en n sous-intervalles de même amplitude l = b −a

n
.

Sur un sous-intervalle ]x; x + l [, l’aire sous la courbe est comprise
entre l’aire de deux rectangles :

• l’un de dimension l et f (x) qui a pour aire l × f (x) ;

• l’autre de dimension l et f (x + l ) qui a pour aire l × f (x + l ).

Sur l’intervalle [a;b], l’aire sous la courbe est comprise entre la
somme des n rectangles "inférieurs" et la somme des n rectangles
"supérieurs".
Voici un algorithme écrit en langage naturel et en langage Python per-
mettant d’obtenir un tel encadrement : 0

C f

a bx x + l

f (x)

f (x + l )

Langage naturel
L ←− (b −a)/n
x ←− a
m ←− 0
p ←− 0
Pour i allant de 0 à n −1

m ←− m +L× f (x)
x ←− x +L
p ←− p +L× f (x)

Afficher m et p

1 def␣integrale(n,a,b):
2 ␣␣␣␣l=(b-a)/n
3 ␣␣␣␣x=a
4 ␣␣␣␣m=0
5 ␣␣␣␣p=0
6 ␣␣␣␣for␣i␣in␣range(0,n):
7 ␣␣␣␣␣␣␣␣m=m+l*x**2
8 ␣␣␣␣␣␣␣␣x=x+l
9 ␣␣␣␣␣␣␣␣p=p+l*x**2

10 ␣␣␣␣return("m␣=",m,"p␣=",p)

Avec le logiciel Edupython, on programme l’algorithme pour la fonction f (x) = x2 (voir ci-dessus).
On exécute plusieurs fois le programme pour obtenir un encadrement de l’intégrale de la fonction carré sur [1;2].
En augmentant le nombre de sous-intervalles,la précision du calcul s’améliore car l’encadrement formé de rectangles
inférieurs et supérieurs se resserre autour de la courbe.

1 >>>␣integrale(10,1,2)
2 (m␣=␣2.185,␣p␣=␣2.485)
3 >>>

1 >>>␣integrale(50,1,2)
2 (m␣=␣2.3034,␣p␣=␣2.3634)
3 >>>

1 >>>␣integrale(100,1,2)
2 (m␣=␣2.31835,p␣=␣2.34835)
3 >>>

Avec cette méthode, on arrive a déterminer de plus en plus précisément la valeur de
∫ 2

1
x2d x

Exemple 2:
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II. Primitives et intégrale

1. Théorème fondamentale

Si f est une fonction continue et positive sur un intervalle [a;b], alors la fonction F définie sur [a;b] par

F (x) =
∫ x

a
f (t )dt est dérivable sur [a;b] et a pour dérivée f .

Propriété 1 :

Propriété à démontrer : « Si f est une fonction continue et positive sur un intervalle [a;b], alors la fonction F définie

sur [a;b] par F (x) =
∫ x

a
f (t )dt est dérivable sur [a;b] et a pour dérivée f . »

Démonstration dans le cas ou f est strictement croissante :

• On considère deux réels x et x +h de l’intervalle [a;b] avec h > 0.

On veut démontrer que lim
h→0

F (x +h)−F (x)

h
= f (x).

F (x +h)−F (x) =
∫ x+h

a
f (t )d t −

∫ x

a
f (t )d t =

∫ x+h

x
f (t )d t .

0

C f

a bx x +h

f (x)

f (x +h)

A B

FE

HG

On a représenté ci-dessus, la courbe de la fonction f (en bleu).
Cette différence est égale à l’aire de la surface colorée en rouge.

Elle est comprise entre les aires des rectangles ABFE et ABHG.

Or, Ai r e ABF E = h × f (x) et Ai r e AB HG = h × f (x +h).

Comme f est croissante sur [a;b], on a :h × f (x) < F (x +h)−F (x) < h × f (x +h)

Puisque h > 0, on a : f (x) < F (x +h)−F (x)

h
< f (x +h).

Comme f est continue sur [a;b], lim
h→0

f (x +h) = f (x).

D’après le théorème des gendarmes, lim
h→0

F (x +h)−F (x)

h
= f (x).

• Dans le cas où h < 0, la démonstration est analogue (les encadrements sont inversés).

On en déduit que F ′(x) = f (x). �

Démonstration :

2. Calcul d’une intégrale

Soit f une fonction continue sur l’intervalle [a;b] et F une primitive de f sur R, alors :∫ b

a
f (x)dx = F (b)−F (a)

Propriété 2 :

Propriété à démontrer : «
∫ b

a
f (x)dx = F (b)−F (a) »

La dérivée de la fonction G définie sur [a;b] par G(x) =
∫ x

a
f (t )dt est la fonction f .

Donc G est une primitive de f sur [a;b].
Si F est une primitive de f alors pour tout x de [a;b], on a G(x) = F (x)+k, k ∈R.

De plus, G(a) =
∫ a

a
f (t )dt = 0 et G(a) = F (a)+k donc F (a) =−k et donc k =−F (a).

Or G(b) =
∫ b

a
f (t )dt = F (b)+k = F (b)−F (a). �

Démonstration :
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Soit f une fonction continue sur un intervalle I , a et b deux réels de I et F une primitive de f sur [a;b].

On appelle intégrale de f sur [a;b] la différence F (b)−F (a) noté
∫ b

a
f (x)dx.

Définition 4:

La définition est étendue à des fonctions de signe quelconque. Pour une fonction f négative sur [a;b], on peut écrire :∫ b

a
f (x)dx = F (b)−F (a) = − (G(b)−G(a)) = −

∫ b

a
− f (x)dx

où G est une primitive de la fonction − f . Dans ce cas, l’intégrale de la fonction f sur [a;b] est égale à l’opposé de
l’aire comprise entre l’axe des abscisse et la courbe représentative de f sur [a;b].

Remarque :

On écrit :
∫ b

a
f (x)dx = [F (x)]b

a = F (b)−F (a)

III. Propriétés des intégrales

1. Relation de Chasles

Soit f une fonction continue sur un intervalle I , trois réels a, b et
c de I , alors : ∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx

Propriété 3 :

1

1

2

3

0a bc∫ c

a
f (x)dx

∫ b

c
f (x)dx

Propriété à démontrer : «
∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx »

∫ c

a
f (x)dx +

∫ b

c
f (x)dx = F (c)−F (a)+F (b)−F (c) = F (b)−F (a) =

∫ b

a
f (x)dx �

Démonstration :

Simplifions l’expression : A =
∫ 3

−4
4x +ex2

dx +
∫ 54

3
4x +ex2

dx

A =
∫ 3

−4
4x +ex2

dx +
∫ 54

3
4x +ex2

dx =
∫ 54

−4
4x +ex2

dx

Exemple 3:

Soit f une fonction continue sur un intervalle I = [a;b], alors :∫ b

a
f (x)dx =−

∫ a

b
f (x)dx

Propriété 4 :

Propriété à démontrer : «
∫ b

a
f (x)dx =−

∫ a

b
f (x)dx »

∫ b

a
f (x)dx +

∫ a

b
f (x)dx =

∫ a

a
f (x)dx = 0. Donc

∫ b

a
f (x)dx =−

∫ a

b
f (x)dx �

Démonstration :
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2. Linéarité

Soit f et g deux fonctions continues sur l’intervalle [a;b], α et β deux nombres réels, alors :∫ b

a
(α f +βg )(x)dx =α

∫ b

a
f (x)dx +β

∫ b

a
g (x)dx

Propriété 5 :

Propriété à démontrer : « Linéarité de l’intégrale »

On applique les propriétés sur les primitives : kF est une primitive de k f et F +G est une primitive de f + g �

Démonstration :

3. Positivité et ordre

• Si, pour tout x ∈ [a;b] : f (x)> 0 alors
∫ b

a
f (x)dx > 0.

• Si, pour tout x ∈ [a;b] : f (x)> g (x) alors
∫ b

a
f (x)dx >

∫ b

a
g (x)dx.

Propriété 6 :

• Propriété à démontrer : « Si f (x)> 0 alors
∫ b

a
f (x)dx > 0 »

Par définition, lorsque f est positive, l’intégrale de f est une aire donc est positive. �

• Propriété à démontrer : « Si f (x)> g (x) alors
∫ b

a
f (x)dx >

∫ b

a
g (x)dx »

Si f (x)> g (x)alors f (x)− g (x)> 0. Donc en appliquant la propriété ci dessus, on a :
∫ b

a
f (x)− g (x)dx > 0.

Par linéarité, on a
∫ b

a
f (x)dx −

∫ b

a
g (x)dx > 0 donc

∫ b

a
f (x)dx >

∫ b

a
g (x)dx. �

Démonstration :

On représente la courbe représentative de la fonction f et de la fonction
g , noté C f et Cg , sur l’intervalle [a;b].

On remarque que sur cet intervalle, g (x)> f (x) et que l’aire du domaine

en rouge

(∫ b

a
f (x)dx

)
est bien plus petit que celui en bleu

(∫ b

a
g (x)dx

)
0

C f

Cg

a b

Exemple 4:

IV. Aire du domaine compris entre deux courbes

Soient f et g deux fonctions continues et positives sur [a;b], de
courbes représentatives C f et Cg telles que f 6 g sur [a;b]. No-
tons A l’aire du domaine compris entre C f et Cg , alors

A =
∫ b

a

[
g (x)− f (x)

]
dx

Propriété 7 :

0

C f

Cg

a b
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V. Valeur moyenne

Soit f une fonction continue sur l’intervalle [a;b] (a < b).La valeur moyenne de f sur [a;b] est le réel

µ= 1

b −a

∫ b

a
f (x)dx

Définition 5:

Dans le cas où f est positive et continue sur [a ;b], la valeur moyenne de
f entre a et b représente la hauteur du rectangle construit sur l’intervalle
[a ;b].
L’aire du rectangle ABC D est égale, en u.a., à l’aire du domaine coloré car
d’après la définition :

µ(b −a) =
∫ b

a
f (t )dt .

O −→
i

−→
j

y = f (x)

A(a ;0) B(b ;0)

CD y =µ

Remarque :

Pour connaître la valeur moyenne µ de t 7→ sin(t ) sur [0;π], on calcule :

µ= 1

π

∫ π

0
sin(t )dt = 1

π
[−cos(x)]π0 = −cos(π)+cos(0)

π
= 2

π
.

Exemple 5:

• En mathématiques, si f est une fonction non constante, la valeur moyenne de f sur [a ;b] est la valeur de la
fonction constante ayant la même intégrale que f sur [a ;b].

• En physique, si f est une fonction qui représente une intensité variable, la valeur moyenne de f entre deux
instants t1 et t2 est l’intensité du courant constant transportant la même quantité d’électricité que le courant
variable entre t1 et t2.

Remarque :

VI. Intégration par partie

Soit u et v deux fonctions dérivables sur [a;b]. Alors, on a :∫ b

a
u′(x)v(x)dx = [u(x)v(x)]b

a −
∫ b

a
u(x)v ′(x)dx

Propriété 8 :

Propriété à démonter : «
∫ b

a
u′(x)v(x)dx = [u(x)v(x)]b

a −
∫ b

a
u(x)v ′(x)dx »

uv est dérivable sur [a;b] et on a : (uv)′ = u′v +uv ′.
Les fonctions uv ′, u′v et (uv)′ sont continues sur [a;b], donc :

[u(x)v(x)]b
a =

∫ b

a
(uv)′(x))dx =

∫ b

a
(u′v +uv ′(x))dx

=
∫ b

a
u′(x)v(x))dx +

∫ b

a
u(x)v ′(x))dx

Donc
∫ b

a
u′(x)v(x)dx = [u(x)v(x)]b

a −
∫ b

a
u(x)v ′(x)dx �

Démonstration : Exigible en fin de terminale
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Calculer les intégrales suivantes :

A =
∫ π

2

0
x sin x dx B =

∫ π
2

0
x2 cos x dx C =

∫ e2

1
ln x dx

A =
∫ π

2

0
x sin x dx

On pose : v(x) = x donc v ′(x) = 1
u′(x) = sin x donc u(x) =−cos x

Ce choix n’est pas anodin! L’idée est ici de ne plus laisser de facteur x dans l’expression qu’il restera à intégrer.
Ainsi, en intégrant par parties, on a :∫ π

2

0
u′(x)v(x)dx = [u(x)v(x)]

π
2
0 −

∫ π
2

0
u(x)v ′(x)dx

= [−cos x ×x]
π
2
0 −

∫ π
2

0
−cos x ×1dx = [−x cos x]

π
2
0 +

∫ π
2

0
cos x dx

= −π

2
cos

(π
2

)
+0cos(0)+ [sin x]

π
2
0

= sin
(π

2

)
− sin0 = 1

B =
∫ π

2

0
x2 cos x dx

On pose : v(x) = x2 donc v ′(x) = 2x
u′(x) = cos x donc u(x) = sin x

Ainsi, en intégrant par parties, on a :∫ π
2

0
u′(x)v(x)dx = [u(x)v(x)]

π
2
0 −

∫ π
2

0
u(x)v ′(x)dx

= [sin x ×x2]
π
2
0 −

∫ π
2

0
sin x ×2x dx

= [x2 sin x]
π
2
0 −2

∫ π
2

0
x sin x dx

Or, dans le terme de droite, on reconnait l’intégrale A de la question précédente qui a été calculée par parties. Il
s’agit ici d’une double intégration par parties. On a donc :

B =
(π

2

)2
sin

(π
2

)
−02 sin0−2×1 = π2

4
−2

C =
∫ e2

1
ln x dx

On pose : v(x) = ln x donc v ′(x) = 1

x
u′(x) = 1 donc u(x) = x

Ainsi, en intégrant par parties, on a :∫ e2

0
u′(x)v(x)dx = [u(x)v(x)]e2

0 −
∫ e2

0
u(x)v ′(x)dx

= [x ln x]e2

0 −
∫ e2

0
x × 1

x
dx

= e2 ln
(
e2)−1ln1−

∫ e2

0
1dx = e2×2lne+[x]e2

0

= e2×2−e2+1 = e2+1

Méthode 1 : Calculer une intégrale en intégrant par parties
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