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f Chapitre 4 f

Complément sur la dérivation

I. Nombre dérivé

Soit f une fonction définie sur un intervalle I contenant a.

Dire que f est dérivable en a, c’est dire que lorsque h tend vers 0, le taux de variation
f (a +h)− f (a)

h
tend vers

un réel `, ce que l’on note

lim
h→0

f (a +h)− f (a)

h
= `

` est appelé le nombre dérivé de f en a. On le note f ′(a).

Définition 1:

Soit f une fonction dérivable en a, C f sa courbe représentative et A le point de C f d’abscisse a.
La tangente à la courbe C f au point A est la droite passant par le point A et dont le coefficient directeur est
f ′(a).

Définition 2:

Soit f une fonction dérivable en a, C f sa courbe représentative et A le point de C f d’abscisse a.
La tangente en A à C f a pour équation : y = f ′(a)(x −a)+ f (a).

Définition 3:

II. Dérivabilité et continuité

Soit f une fonction définie sur un intervalle I et a un élément de I . Si f est dérivable en a (sur I ) alors f est
continue en a (sur I ).

Propriété 1 : Admise

La réciproque est fausse. Pour s’en convaincre, on pourra considérer la fonction valeur absolue en 0.

Remarque :

III. Fonction dérivée

Une fonction f est dérivable sur un intervalle D si et seulement si elle est dérivable en tout réel a de D .
Si f est dérivable sur D , on appelle fonction dérivée de f sur D la fonction définie sur D par f ′ : a → f ′(a).

Définition 4:

Fonction f Domaine de définition Fonction dérivée f ′ Domaine de dérivabilité

xn R nxn−1 R

1

x
R/{0} − 1

x2 ]−∞;0[∪ ]0;+∞[

p
x [0;+∞[

1

2
p

x
]0,+∞[

ex R ex R

Propriété 2 :
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IV. Dérivées et opérations

1. Somme de deux fonctions, produit d’une fonction par un réel

Si f (x) = u(x)+ v(x) avec u et v deux fonctions dérivables sur ]a;b[, alors f est dérivable sur ]a;b[ et

f ′(x) = u′(x)+ v ′(x)

Propriété 3 :

Si f (x) =λu(x) où λ est un nombre réel et u une fonction dérivable sur ]a;b[, alors f est dérivable sur ]a;b[ et

f ′(x) =λu′(x)

Propriété 4 :

2. Produit, quotient de deux fonctions, inverse d’une fonction

Si f (x) = u(x)v(x) où u et v sont deux fonctions dérivables sur ]a;b[ alors la fonction f est dérivable sur ]a;b[
et

f ′(x) = u′(x)v(x)+u(x)v ′(x)

Propriété 5 :

• Si f (x) = 1

u(x)
où u est une fonction dérivable sur ]a;b[ et si u(x) 6= 0 pour tout x ∈ ]a;b[, alors f est une

fonction dérivable sur ]a;b[ et

f ′(x) =− u′(x)

[u(x)]2

• Si f (x) = u(x)

v(x)
où u et v sont deux fonctions dérivables sur ]a;b[ et si v(x) 6= 0 pour tout x ∈ ]a;b[, alors

f est une fonction dérivable sur ]a;b[ et

f ′(x) = u′(x)v(x)−u(x)v ′(x)

[v(x)]2

Propriété 6 :

3. Composés de deux fonctions

Soit f une fonction numérique définie sur un ensemble I ⊂R, dont l’image est incluse dans un ensemble J ⊂R
et soit g une fonction définie sur J .
On appelle fonction composée de f par g la fonction notée g ◦ f définie pour tout x ∈ I par g ◦ f (x) = g ( f (x)).

Définition 5:

Soit f : x 7→ 2x +3 et g : x 7→ 4x3.

x
f7−−−−→ f (x) = 2x +3

g7−−−−→ g ( f (x)) = 4(2x +3)3

D’où g ◦ f (x) = 4(2x +3)3

x
g7−−−−→ g (x) = 4x3 f7−−−−→ f (g (x)) = 2(4x3)+3

D’où f ◦ g (x) = 2(4x3)+3 = 8x3 +3

Exemple 1:
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Soit f une fonction dérivable sur un intervalle I et prenant ses valeurs dans un ensemble inclus dans un
intervalle J . Soit g une fonction dérivable sur l’intervalle J . Dans ces conditions, la fonction g ◦ f est dérivable
sur l’intervalle I et on a :

(g ◦ f )′ = f ′× (g ′ ◦ f )

Soit
(g ◦ f )′(x) = f ′(x)× (g ′ ◦ f )(x) = f ′(x)× (g ′( f (x)))

Propriété 7 :

Propriété à démontrer : « (g ◦ f )′(x) = f ′(x)× (g ′ ◦ f )(x) = f ′(x)× (g ′( f (x))) »

Soit x0 un réel de l’intervalle de I . On veut montrer que g ◦ f est dérivable en x0 donc que
(g ◦ f )(x)− (g ◦ f )(x0)

x −x0
admet une limite finie lorsque x tend vers x0.

(g ◦ f )(x)− (g ◦ f )(x0)

x −x0
= f (x)− f (x0)

x −x0
× (g ◦ f )(x)− (g ◦ f )(x0)

f (x)− f (x0)

D’une part, f étant dérivable en x0, on sait que
f (x)− f (x0)

x −x0
tend vers f ′(x0) quand x tend vers x0.

D’autre part, lorsque x tend vers x0, f (x) tend vers f (x0) car f est continue en x0 (car dérivable sur I ). De plus, comme

g est dérivable en f (x0),
g ( f (x))− g ( f (x0))

g (x)− g (x0)
tend vers g ′( f (x)) = (g ′ ◦ f )(x0).

Donc
(g ◦ f )(x)− (g ◦ f )(x0)

x −x0
= f (x)− f (x0)

x −x0
× (g ◦ f )(x)− (g ◦ f )(x0)

f (x)− f (x0)
tend vers f ′(x0)× (g ′ ◦ f )(x0) pour tout x0 de I .�

Démonstration :

Pour toute fonction u définie et dérivable sur un
intervalle I , on a :

Fonction Dérivée Condition

x 7→ un(x) x 7→ n ×u′(x)×un−1(x)

x 7→p
u(x) x 7→ u′(x)

2
p

u(x)
u(x) > 0

x 7→ eu(x) x 7→ u′(x)×eu(x)

Remarque :

V. Étude de fonction

1. Sens de variation et dérivée

Soit f une fonction définie et dérivable sur un intervalle I .

• f ′(x) = 0 sur I si et seulement si f est constante sur I .

• f ′(x) > 0 sur I si et seulement si f est strictement croissante sur I .

• f ′(x) < 0 sur I si et seulement si f est strictement décroissante sur I .

Propriété 8 :

2. Extremum

Soit f une fonction définie sur un intervalle I de R et x0 un nombre réel appartenant à I .

• La fonction f admet un maximum sur I , atteint en x0 signifie que : pour tout réel x de I , f (x)6 f (x0).
M = f (x0) est le maximum de f sur I .

• La fonction f admet un minimum sur I , atteint en x0 signifie que : pour tout réel x de I , f (x)> f (x0).
m = f (x0) est le minimum de f sur I .

• Dire que f (x0) est un extremum de f signifie que f (x0) est un maximum ou un minimum.

Définition 6:

Soit f définie et dérivable sur un intervalle I et soit a un élément de I . Si f admet un extremum local en a
alors f ′(a) = 0.

Propriété 9 :
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