Terminale Spécialité Mathématiques Année 2020 - 2021

#% Chapitre 12 5
Fonction logarithme népérien

I. Lien avec la fonction exponentielle

Définition 1:
La fonction logarithme népérien, notée In, est la fonction définie sur ]0;+oo[, qui a tout nombre réel x > 0

associe I'unique solution de I'’équation e” = x, d’'inconnue y.
On note cette solution y =Inx.

P A
Conséquences
1. Pour tout réel x > 0 et pour tout réel y,
4. <+
e/=x<y=Inx y=a
|
]
2. Pour tout réel x >0, :
elnx =x :
)
3. Pour tout réel x, :
In(e¥)=x |
]
]
* 242 ]
@® Propriété 1 : —_— , : =
Pour tous réels a et b strictement positif : -4 3 -2 -L ob=In(a

e Ina=Inbsietseulementsia=>b

e Ina>Inbsietseulementsia>b

'\@/‘ Méthode 1 : Résoudre une équation avecln
Pour résoudre une équation du type In(u(x)) = In(v(x)) :

¢ Rechercher’ensemble E des réels tels que u(x) >0 et v(x) > 0;

¢ Résoudre dans E, I'équation u(x) = v(x) .

Exemple 1:
7 p

On va résoudre I'équation In(x + 2) =In(3 — x).
Conditions d’existence: x+2>0et3— x> 0.
C’est-a-dire: x> —-2et3>x.D'ou E=]-2;3[.

1
Pour tout x € E, In(x +2) =In(3 — x) équivaut a x + 2 = 3 — x c’est-a-dire 2x = 1 ou encore x = 3

1
Ce nombre appartient bien a E. Donc I'’ensemble des solutions est S = { 3 }

'\@/‘ Méthode 2 : Résoudre une inéquation avecln
Pour résoudre une inéquation du type In(u(x)) <In(v(x)) :

¢ Rechercher I'ensemble E des réels tels que u(x) >0 et v(x) > 0;

¢ Résoudre dans E, I'inéquation u(x) < v(x).

Exemple 2:
7 p

On va résoudre I'inéquation In(x? + 3x) <In18.

Condition d’existence : x% + 3x > 0 soit x(x+3) >0. D’oli E = |—00; =3[ U]0; +00l.
Pour tout x € E, In(x? + 3x) <In18 équivaut a x> + 3x < 18 ou encore x> +3x — 18 < 0.
Le trindme x? + 3x — 18 a pour discriminant A = 81 et pour racines —6 et 3.

Donc x*> +3x-18<0 < x€]-6;3[.

En tenant compte du fait que x appartient a E, on a finalement, S =]-6;—-3[U]0;3[.
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II. Relations fonctionnelles

Définition 2:
Pour tous réels strictement positifsaet bon a:

In(ab)=lna+Inb

Conséquences :
Pour tous réels strictement positifs a, b et tout entier naturel p, ona:
1. In(ab)=Ina+Inb 2. ln%zlna—lnb
1
3. In—=-Ina 4. In(a”) =plna
a
1
5. Inya= glna
# Exemple 3:
(x+2)?
Simplifions A =1In
P VX+2
(x+2)? 5 1 3
A = In = Inx+2)*-Invx+2 = 2xIn(x+2)—-=-xIn(x+2) = =xInx+2)
Vx+2 2 2

'@C Méthode 3 : Résoudre une inéquation avec une inconnue a l'exposant

n
On cherche a résoudre I'inéquation (5) <0,01 avec n e N.

5

1
En divisant chaque membre par In (5) qui est strictement négatif, le sens de 'inégalité change.

n
La fonction In est croissante sur ]0; +oo[ donc I'inéquation (5) < 0,01 est équivalente a In <1no0,01.

Pour tout a > 0, In(a”) = nln a, donc I'inéquation s’écrit : nln 3 <1no0,01.

In0,01 In0,01
0’ or ——=~4,19
3

g
In| =
3
Lensemble solution est constitué de tous les entiers n > 5.

I11. Etude de la fonction In x

1. Continuité

Définition 3:

| Lafonction logarithme népérien est définie et continue sur ]0; +oo|

2. Dérivée de la fonction In x

@ Propriété 2 :

La fonction logarithme népérien est dérivable sur ]0; +oo| et

1
(Inx) ==
X
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& Démonstration :

1
Propriété a démontrer : « (Inx) = — »
X

On admet que la fonction In est dérivable sur ]0; +ool.
Pour tout réel x > 0, on pose f(x) = e"*. La fonction In étant dérivable sur ]0; +oo|, f est aussi dérivable sur ]0; +oo.
Pour tout réel x > 0, calculons f’(x) de deux maniéres :

o f'(x) =In'(x) x ™™ = xIn’ (x)

¢ f(x)=xdonc f'(x) =1.

1
On en déduit que pour tout réel x > 0, xIn'(x) = 1, par suite In’(x) = < |

3. Limite de la fonction In x

@® Propriété 3 :

% lim In(x) = +o0 et limIn(x) = —oco
X—+00 x—0
x>0

& Démonstration :

¢ Propriété a démontrer : « lir+n In(x) = +oco»
X—+00

Pour tout réel A >0,
Inx>A < x>efdonc lim In(x) = +oo. [ ]
X—+00

¢ Propriété a démontrer : « liH(l) In(x) = —oco»
e

x>0
’ 1 1 1
Pour tout réel x > 0, on pose X = < Onax= X donclnx=Iln—=-InX
lll’%X +o0 et XllIIl (—=In X) = —oco donc par limite d'une composée lin(l]ln(x) = —oo0. ]
+00 X—
x>0 x>0

@ Propriété 4 : Croissance comparée

. Inx .
lim — =0 et limxlnx=0
x—+o00 X x—0

v

& Démonstration :

Inx
e Propriété a démontrer: « lim — =0»
x—+00 X
Pour tout réel x > 0, on effectue le changement de variable : X =Inx, on a alors x = eX.
Al Inx X 1
nsi—=—=
x  eX X'
X
eX 1
Or lim X= lim Inx=+4ocoet lim — =+oodonc par limite d'un quotlent l =0.
x—-+00 x—+00 X—too X 0 eX
X
, Inx
Enfin, par limite d'une composée, lim — =0. |
x—+00 X

* Propriété a démontrer : « lin}) xlnx=0»
X—

Pour tout réel x > 0, on pose X =Inx, on a alors xInx = eX x X.

Ona hn}) X= hn}) Inx = —oco et par propriété, llm XeX =0, donc par limite d’'une composée, llm xInx=0. W
—00
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A Remarque :
La propriété précédente est vraie pour n'importe quel polynéme de degré n :
. Inx . n
lim — =0 et limx"Inx=0
x—+oo0 xN x—0

i Propriété 5 :  Limite et taux d’accroissement

§ . In(Q+h)
hm — =1
h—0 h

& Démonstration :
cis s a2 . In(1+h)
Propriété a démontrer : « lim ———= =1»
h—0 h
In(1+h)—In1l

n =In'(1).

La fonction In est dérivable en 1 donc, par définition, }lin(l)
In(1+ h) 1

1
Orlnl=0etln'(1) = 1 =1, on obtient donc }lin})

'@C Méthode 4 : Lever une indétermination pour étudier une limite
On cherche a déterminer les limites suivantes :

1. lim (Inx-2x)
X—+00

1
2. lim xIn (1 + —)
X

X—+00

Dans le cas d'une forme indéterminée qui fait intervenir la fonction In, on peut :

1. Factoriser et faire apparaitre des limites déja connues :

, Inx . .. Inx . Inx
Pour toutréel x >0, Inx—2x = x| — —2|. Par propriété, lim — =0donc lim |—-2|=-2.
X x—+0o X x—+oo\ Xx

N L Inx
Donc par limite d'un produit, lim x[— —2|=—oc0.
X—+00 X
Ainsi, lim (Inx-2x) = —oco.
X—+00

2. Effectuer un changement de variable :

P 1 1 In(1+ X)
Pour tout réel x > 0, on pose X = 7 onaalors xIn|1+ It
' 1 . In+Xx)
Ona lim X = lim — =0etpar propriété, lim ———=1
X—+00 X—+00 X X—0 X

1
Donc par limite d'une composée, lim xIn (1 + —) =1.
X—+00 X

4. Variations de la fonction In x

@ Propriété 6 :

< Lafonction logarithme népérien est strictement croissante sur ]0; +oo|

X 0 1 e +00 1
(Inx)’ + %
-1

H +00 _1

Y /

Inx 1
0

_w . _2
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& Démonstration :
Propriété & démontrer : « La fonction logarithme népérien est strictement croissante sur ]0; +oo[ »

La fonction logarithme népérien est dérivable sur R** et sa dérivée est la fonction inverse.
Or la fonction inverse est positive sur R**, donc la fonction logarithme népérien est croissante sur R*™* ]

A Remarque :

Une équation de la tangente a la courbe de la fonctionlnen 1 est y = In'(1)(x—1) +In1 soit y=x-1.

IV. Etude de la fonction In (x)

1. Limites de la fonction In ©(x)

'\@/‘ Méthode 5 : FEtudier les limites d’une fonction du typeln u
Pour étudier les limites d'une fonction du type In u, on peut :

e utiliser le théoreme sur la limite d'une composée;

* utiliser les théorémes de comparaison.

+2\ .
f estla fonction définie sur ]0; +ool par f(x) =In (x?) Etudier les limites de la fonction f aux bornes de son

ensemble de définition.

+2 1 2 1 2 o o x+2

e Pourtoutx>0, —— = —+—.Deplus, lim —=0et lim — =0donc parlimite d'une somme, lim —— =
x2 x x2 X—+00 x x—+o0 x2 x—+oo  x2

0.

De plus, )l(m}) In X = —oo donc par limite d’'une composée, thP f(x) = —o0.
— —+00

xX+2 X x+2 1 . . .
e Pour tout x > 0, — > donc —— > — or la fonction In est strictement croissante sur ]0 ; +oo[ donc f(x) >
X X X

2
1
ln(—) ou encore f(x) > —Inx.
X

De plus, lim In x = —co donc lim (—In x) = +0o donc par comparaison, lim f(x) = +oo.
x—0 x—0 X—+00

2. Dérivée de la fonction In u(x)

@® Propriété 7 :

Soit une fonction u(x) définie, dérivable et strictement positive sur un intervalle I. Alors la fonction f(x) =
In (1(x)) est définie et dérivable sur I et

/
/ u'(x)
f=- ®
& Démonstration :
!
Propriété a démontrer : « Si f(x) = In (u(x)) alors f'(x) = u((j:)) N

On utilise la formule des fonctions composées :

!
I ’ oy 1 u (x)
(In(u(x)) = v/ (x) x In"(u(x) = ' (x) x el -

:@/‘ Méthode 6 : Calculer la dérivée d'une fonction du typelnu

Pour dériver une fonction du type Inu sur un intervalle I, on s’assure que la fonction u est dérivable et strictement
positive sur I'intervalle 1.

f estla fonction définie sur R par f(x) = In(x% + 3). Calculons ).

Posons u(x) = x> + 3. u est dérivable et strictement positive sur R et #'(x) = 2x. Donc f est dérivable sur R et f'(x) =
u'(x)  2x

u(x)  x2+3°
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V. Fonction logarithme décimale

Cette partie, bien que hors programme, peut avoir un intérét en Physique-Chimie, ainsi qu’en Sciences de la Vie
et de la Terre.

I N

Définition 4:
La fonction logarithme décimal, notée log, est la fonction définie sur ]0;+oo|, par :
| Inx
ogx=——.
& In10

@ Propriété 8 :
1. Pour tout entier relatif n, log(10™) = n.
2. Lafonction log est strictement croissante sur ]0; +ool.

3. Pourtouslesréelsa>0etb>0,

log(ab) =loga+logb et log (%) =loga—logh.

,
\

4 Démonstration :

A Remarque :
Les logarithmes décimaux trouvent toute leur utilité en chimie (calcul de pH), en acoustique (mesure du son), en
sismologie (magnitude d'un séisme), en astronomie (magnitude apparente d’un astre)...
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