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f Chapitre 12 f

Fonction logarithme népérien

I. Lien avec la fonction exponentielle

La fonction logarithme népérien, notée ln, est la fonction définie sur ]0;+∞[, qui à tout nombre réel x > 0
associe l’unique solution de l’équation e y = x, d’inconnue y .
On note cette solution y = ln x.

Définition 1:

−4 −3 −2. −1.

1.

2.

3.

4.

0

C f : y = ex

b = ln(a)

y = a

Conséquences :
1. Pour tout réel x > 0 et pour tout réel y ,

e y = x ⇐⇒ y = ln x

2. Pour tout réel x > 0,
e ln x = x

3. Pour tout réel x,
ln

(
ex)= x

Pour tous réels a et b strictement positif :

• ln a = lnb si et seulement si a = b

• ln a > lnb si et seulement si a > b

Propriété 1 :

Pour résoudre une équation du type ln(u(x)) = ln(v(x)) :

• Rechercher l’ensemble E des réels tels que u(x) > 0 et v(x) > 0 ;

• Résoudre dans E , l’équation u(x) = v(x) .

Méthode 1 : Résoudre une équation avec ln

On va résoudre l’équation ln(x +2) = ln(3−x).
Conditions d’existence : x +2 > 0 et 3−x > 0.
C’est-à-dire : x >−2 et 3 > x. D’où E = ]−2;3[.

Pour tout x ∈ E , ln(x +2) = ln(3−x) équivaut à x +2 = 3−x c’est-à-dire 2x = 1 ou encore x = 1

2
.

Ce nombre appartient bien à E . Donc l’ensemble des solutions est S =
{

1

2

}
.

Exemple 1:

Pour résoudre une inéquation du type ln(u(x)) < ln(v(x)) :

• Rechercher l’ensemble E des réels tels que u(x) > 0 et v(x) > 0 ;

• Résoudre dans E , l’inéquation u(x) < v(x).

Méthode 2 : Résoudre une inéquation avec ln

On va résoudre l’inéquation ln(x2 +3x) < ln18.
Condition d’existence : x2 +3x > 0 soit x(x +3) > 0. D’où E = ]−∞ ;−3[∪ ]0 ;+∞[.
Pour tout x ∈ E , ln(x2 +3x) < ln18 équivaut à x2 +3x < 18 ou encore x2 +3x −18 < 0.
Le trinôme x2 +3x −18 a pour discriminant ∆= 81 et pour racines −6 et 3.
Donc x2 +3x −18 < 0 ⇐⇒ x ∈ ]−6;3[.
En tenant compte du fait que x appartient à E , on a finalement, S = ]−6;−3[∪ ]0 ;3[.

Exemple 2:

30 juillet 2020 Lycée René Cassin Page 1/6



Terminale Spécialité Mathématiques Année 2020 - 2021

II. Relations fonctionnelles

Pour tous réels strictement positifs a et b on a :

ln(ab) = ln a + lnb

Définition 2:

Conséquences :
Pour tous réels strictement positifs a, b et tout entier naturel p, on a :

1. ln(ab) = ln a + lnb 2. ln
a

b
= ln a − lnb

3. ln
1

a
=− ln a 4. ln(ap ) = p ln a

5. ln
p

a = 1

2
ln a

Simplifions A = ln
(x +2)2

p
x +2

A = ln
(x +2)2

p
x +2

= ln(x +2)2 − ln
p

x +2 = 2× ln(x +2)− 1

2
× ln(x +2) = 3

2
× ln(x +2)

Exemple 3:

On cherche à résoudre l’inéquation

(
1

3

)n

6 0,01 avec n ∈N.

La fonction ln est croissante sur ]0;+∞[ donc l’inéquation

(
1

3

)n

6 0,01 est équivalente à ln

[(
1

3

)n]
6 ln0,01.

Pour tout a > 0, ln(an) = n ln a, donc l’inéquation s’écrit : n ln

(
1

3

)
6 ln0,01.

En divisant chaque membre par ln

(
1

3

)
qui est strictement négatif, le sens de l’inégalité change.

n>
ln0,01

ln

(
1

3

) , or
ln0,01

ln

(
1

3

) ≈ 4,19

L’ensemble solution est constitué de tous les entiers n> 5.

Méthode 3 : Résoudre une inéquation avec une inconnue à l’exposant

III. Étude de la fonction ln x

1. Continuité

La fonction logarithme népérien est définie et continue sur ]0;+∞[

Définition 3:

2. Dérivée de la fonction ln x

La fonction logarithme népérien est dérivable sur ]0;+∞[ et

(ln x)′ = 1

x

Propriété 2 :
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Propriété à démontrer : « (ln x)′ = 1

x
»

On admet que la fonction ln est dérivable sur ]0;+∞[.
Pour tout réel x > 0, on pose f (x) = eln x . La fonction ln étant dérivable sur ]0;+∞[, f est aussi dérivable sur ]0;+∞[.

Pour tout réel x > 0, calculons f ′(x) de deux manières :

• f ′(x) = ln′(x)×eln(x) = x ln′(x)

• f (x) = x donc f ′(x) = 1.

On en déduit que pour tout réel x > 0, x ln′(x) = 1 , par suite ln′(x) = 1

x
. �

Démonstration :

3. Limite de la fonction ln x

lim
x→+∞ ln(x) =+∞ et lim

x→0
x>0

ln(x) =−∞
Propriété 3 :

• Propriété à démontrer : « lim
x→+∞ ln(x) =+∞ »

Pour tout réel A > 0,
ln x > A ⇐⇒ x > eA donc lim

x→+∞ ln(x) =+∞. �

• Propriété à démontrer : « lim
x→0
x>0

ln(x) =−∞ »

Pour tout réel x > 0, on pose X = 1

x
. On a x = 1

X
donc ln x = ln

1

X
=− ln X

lim
x→0
x>0

X =+∞ et lim
X→+∞

(− ln X ) =−∞ donc par limite d’une composée lim
x→0
x>0

ln(x) =−∞. �

Démonstration :

lim
x→+∞

ln x

x
= 0 et lim

x→0
x ln x = 0

Propriété 4 : Croissance comparée

• Propriété à démontrer : « lim
x→+∞

ln x

x
= 0 »

Pour tout réel x > 0, on effectue le changement de variable : X = ln x, on a alors x = eX .

Ainsi
ln x

x
= X

eX
= 1

eX

X

.

Or lim
x→+∞X = lim

x→+∞ ln x =+∞ et lim
X→+∞

eX

X
=+∞ donc par limite d’un quotient lim

X→+∞
1

eX

X

= 0.

Enfin, par limite d’une composée, lim
x→+∞

ln x

x
= 0. �

• Propriété à démontrer : « lim
x→0

x ln x = 0 »

Pour tout réel x > 0, on pose X = ln x, on a alors x ln x = eX ×X .

On a lim
x→0

X = lim
x→0

ln x =−∞ et par propriété, lim
X→−∞

X eX = 0, donc par limite d’une composée, lim
x→0

x ln x = 0. �

Démonstration :
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La propriété précédente est vraie pour n’importe quel polynôme de degré n :

lim
x→+∞

ln x

xn = 0 et lim
x→0

xn ln x = 0

Remarque :

lim
h→0

ln(1+h)

h
= 1

Propriété 5 : Limite et taux d’accroissement

Propriété à démontrer : « lim
h→0

ln(1+h)

h
= 1 »

La fonction ln est dérivable en 1 donc, par définition, lim
h→0

ln(1+h)− ln1

h
= ln′(1).

Or ln1 = 0 et ln′(1) = 1

1
= 1, on obtient donc lim

h→0

ln(1+h)

h
= 1. �

Démonstration :

On cherche à déterminer les limites suivantes :

1. lim
x→+∞ (ln x −2x)

2. lim
x→+∞x ln

(
1+ 1

x

)
Dans le cas d’une forme indéterminée qui fait intervenir la fonction ln, on peut :

1. Factoriser et faire apparaître des limites déjà connues :

Pour tout réel x > 0, ln x −2x = x

(
ln x

x
−2

)
. Par propriété, lim

x→+∞
ln x

x
= 0 donc lim

x→+∞

(
ln x

x
−2

)
=−2.

Donc par limite d’un produit, lim
x→+∞x

(
ln x

x
−2

)
=−∞.

Ainsi, lim
x→+∞ (ln x −2x) =−∞.

2. Effectuer un changement de variable :

Pour tout réel x > 0, on pose X = 1

x
, on a alors x ln

(
1+ 1

x

)
= ln(1+X )

X
.

On a lim
x→+∞X = lim

x→+∞
1

x
= 0 et par propriété, lim

X→0

ln(1+X )

X
= 1

Donc par limite d’une composée, lim
x→+∞x ln

(
1+ 1

x

)
= 1.

Méthode 4 : Lever une indétermination pour étudier une limite

4. Variations de la fonction ln x

La fonction logarithme népérien est strictement croissante sur ]0;+∞[

Propriété 6 :

x

(ln x)′

ln x

0 +∞

+

−∞

+∞+∞

1

0

e

1

−1 1 2 3 4

−2

−1

1

0

C f : y = lnx

e
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Propriété à démontrer : « La fonction logarithme népérien est strictement croissante sur ]0;+∞[ »

La fonction logarithme népérien est dérivable sur R+∗ et sa dérivée est la fonction inverse.
Or la fonction inverse est positive sur R+∗, donc la fonction logarithme népérien est croissante sur R+∗ �

Démonstration :

Une équation de la tangente à la courbe de la fonction ln en 1 est y = ln′(1)(x −1)+ ln1 soit y = x −1.

Remarque :

IV. Étude de la fonction lnu(x)

1. Limites de la fonction lnu(x)

Pour étudier les limites d’une fonction du type lnu, on peut :

• utiliser le théorème sur la limite d’une composée ;

• utiliser les théorèmes de comparaison.

f est la fonction définie sur ]0;+∞[ par f (x) = ln

(
x +2

x2

)
. Étudier les limites de la fonction f aux bornes de son

ensemble de définition.

• Pour tout x > 0,
x +2

x2 = 1

x
+ 2

x2 . De plus, lim
x→+∞

1

x
= 0 et lim

x→+∞
2

x2 = 0 donc par limite d’une somme, lim
x→+∞

x +2

x2 =
0.

De plus, lim
X→0

ln X =−∞ donc par limite d’une composée, lim
x→+∞ f (x) =−∞.

• Pour tout x > 0,
x +2

x2 > x

x2 donc
x +2

x2 > 1

x
or la fonction ln est strictement croissante sur ]0 ;+∞[ donc f (x) >

ln

(
1

x

)
ou encore f (x) >− ln x.

De plus, lim
x→0

ln x =−∞ donc lim
x→0

(− ln x) =+∞ donc par comparaison, lim
x→+∞ f (x) =+∞.

Méthode 5 : Étudier les limites d’une fonction du type lnu

2. Dérivée de la fonction lnu(x)

Soit une fonction u(x) définie, dérivable et strictement positive sur un intervalle I . Alors la fonction f (x) =
ln(u(x)) est définie et dérivable sur I et

f ′(x) = u′(x)

u(x)

Propriété 7 :

Propriété à démontrer : « Si f (x) = ln(u(x)) alors f ′(x) = u′(x)

u(x)
»

On utilise la formule des fonctions composées :

(ln(u(x)))′ = u′(x)× ln′(u(x)) = u′(x)× 1

u(x)
= u′(x)

u(x) �

Démonstration :

Pour dériver une fonction du type lnu sur un intervalle I , on s’assure que la fonction u est dérivable et strictement
positive sur l’intervalle I .
f est la fonction définie sur R par f (x) = ln(x2 +3). Calculons f ′(x).
Posons u(x) = x2 +3. u est dérivable et strictement positive sur R et u′(x) = 2x. Donc f est dérivable sur R et f ′(x) =
u′(x)

u(x)
= 2x

x2 +3
.

Méthode 6 : Calculer la dérivée d’une fonction du type lnu
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V. Fonction logarithme décimale

Cette partie, bien que hors programme, peut avoir un intérêt en Physique-Chimie, ainsi qu’en Sciences de la Vie
et de la Terre.

La fonction logarithme décimal, notée log, est la fonction définie sur ]0;+∞[, par :

log x = ln x

ln10
.

Définition 4:

1. Pour tout entier relatif n, log(10n) = n.

2. La fonction log est strictement croissante sur ]0;+∞[.

3. Pour tous les réels a > 0 et b > 0,

log(ab) = log a + logb et log
( a

b

)
= log a − logb.

Propriété 8 :

Démonstration :

Les logarithmes décimaux trouvent toute leur utilité en chimie (calcul de pH), en acoustique (mesure du son), en
sismologie (magnitude d’un séisme), en astronomie (magnitude apparente d’un astre)...

Remarque :
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