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f Chapitre 7 f

Géométrie vectorielle dans l’espace

I. Vecteurs de l’espace

1. Translations

Soient A et B deux points distinct de l’espace. La translation t de vecteur
−→
AB est la transformation qui, à tout

point C , associe un unique point D tel que
−−→
C D =−→

AB .

Définition 1:

Soient A et B deux points de l’espace, −→u un vecteur de l’espace et t la translation de vecteur −→u . On note A′ et

B ′ les images respectives de A et B par la translation t . On a alors
−−−→
A′B ′ =−→

AB

Propriété 1 :

Propriété à démontrer : « A′ et B ′ les images de A et B par la translation t de vecteur −→u . On a
−−−→
A′B ′ =−→

AB »

On note t : A 7→ A′ la translation de vecteur −→u ; autrement dit t (A) = A′ ⇐⇒−−→
A A′ =−→u .

De même, t (B) = B ′ ⇐⇒−−→
BB ′ =−→u .

D’après la relation de Chasles, on a :
−−−→
A′B ′ =−−→

A′A+−→
AB +−−→

BB ′ =−−→u +−−−→
A′B ′+−→u =−→

AB �

Démonstration :

2. Vecteur colinéaires, vecteurs coplanaires

Deux vecteurs
−→
u et

−→
v sont colinéaires si, et seulement si, il existe un nombre réel λ tel que

−→
v =λ−→u

Définition 2:

Trois points A, B et C de l’espace deux à deux distinct sont alignés si, et seulement si, les vecteurs
−−→
AB et

−−→
AC

sont colinéaires.
Les droites (AB) et (C D) sont parallèles si, et seulement si, les vecteurs

−−→
AB et

−−→
C D sont colinéaires.

Propriété 2 :

Propriété à démontrer : « Trois points A, B et C de l’espace deux à deux distinct sont alignés si, et seulement si, les

vecteurs
−−→
AB et

−−→
AC sont colinéaires. »

Les vecteurs
−→
AB et

−→
AC sont colinéaires, si et seulement si, les vecteurs

−→
AB et

−→
AC ont la même direction, c’est à

dire, si et seulement si, (AB) ET (AC ) sont parallèles.
Or, A appartient à ces deux droites. Elles sont donc confondues, ce qui équivaut à dire que les points A, B , et C sont
alignés. �

Démonstration :

Dire que les vecteurs
−→
u ,

−→
v et

−→
w sont coplanaires signifie que pour un point O quelconque de l’espace, les

points O, A, B et C définis par
−−→
O A =−→

u ,
−−→
OB =−→

v et
−−→
OC =−→

w sont dans un même plan.

Définition 3:
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−→
u ,

−→
v et

−→
w sont des vecteurs de l’espace tels que

−→
u et

−→
v ne sont pas colinéaires.

Les vecteurs
−→
u ,

−→
v et

−→
w sont coplanaires si, et seulement si, il existe des nombres réels λ et µ tels que :

−→
w =λ−→u +µ−→v

Propriété 3 :

Propriété à démontrer : «
−→
u ,

−→
v et

−→
w sont coplanaires si, et seulement si

−→
w =λ−→u +µ−→v »

−→
u ,

−→
v et

−→
w sont des vecteurs de l’espace tels que

−→
u et

−→
v ne sont pas colinéaires.

On considère les points O, A, B et C définis par
−−→
O A =−→

u ,
−−→
OB =−→

v et
−−→
OC =−→

w .

(⇒) −→u et −→v ne sont pas colinéaires, donc les droites (O A) et (OB) ne sont pas parallèles. Elles sont donc sécantes en
O. Les points O, A et B ne sont pas alignés.
On note R le projeté orthogonale de C sur (O A) parallèlement à (OB). R ∈ (O A) donc les points O, A et R sont alignés

et les vecteurs
−−→
O A et

−−→
OR sont colinéaires. Il existe donc un réel λ tel que

−−→
OR =λ−−→O A.

Par construction, les droites (RC ) et (OB) sont parallèles. Les vecteurs
−→
RC et

−−→
OB sont donc colinéaires. Il existe alors

un réel µ tel que
−→
RC =µ−−→OB .

Ainsi, il existe deux réels λ et µ tels que −→w =−−→
OC =−−→

OR +−→
RC =λ−−→O A+µ−−→OB =λ−→u +µ−→v .

(⇐) −→u et −→v sont non colinéaires, donc
(
O;

−−→
O A,

−−→
OB

)
est un repère du plan.

Soit le point E du plan (O AB) de coordonnées (λ;µ) dans ce repère. On a
−−→
OE =λ−−→O A+µ−−→OB . Or,

−−→
OE =−→w et comme O,

A, B et E sont coplanaires alors les vecteurs −→u , −→v et −→w le sont également. �

Démonstration :

On considère une pyramide ABC DE de sommet E dont la base est un parallélogramme ABC D . Soient −→u = −→
AB ,

−→v = 2
−−→
AD +−−→

DE et −→w =−→
AC +−→

AE . Démontrer que les vecteurs
−→
u ,

−→
v et

−→
w sont coplanaires.

Pour démontrer que trois vecteurs
−→
u ,

−→
v et

−→
w sont coplanaires, il suffit de déterminer les réels λ, µ tels que−→w =λ−→u +µ−→v

Pour cela, on décompose le vecteur −→w en utilisant le fait que ABC Dsoit un parallélogramme et la relation de Chasles.

On a −→w =−→
AC +−→

AE =−→
AB +−→

BC +−→
AE . Or, ABC D est un parallélogramme donc

−→
BC =−−→

AD .

On a alors −→w =−→
AB +−−→

AD +−−→
AD +−→

AE =−→
AB +2

−−→
AD +−→

AE =−→u +−→v donc les vecteurs sont coplanaires.

Méthode 1 :

3. Vecteurs linéairement indépendants et base de l’espace

Soient
−→
u ,

−→
v et

−→
w trois vecteurs de l’espace et a, b et c trois réels.

Les vecteurs −→u , −→v et −→w sont dits linéairement indépendants lorsqu’il ne sont pas coplanaires, autrement dit
lorsque a−→u +b−→v + c−→w =−→

0 =⇒ a = b = c = 0.

Définition 4:

Trois vecteurs linéairement indépendants forment une base de l’espace.

Définition 5:

Soit (O;−→ı ;−→ ;
−→
k ) une base de l’espace. Pour tout vecteur−→w de l’espace, il existe un unique triplet de réels(x; y ; z)

tel que −→w = x
−→
i + y

−→
j + z

−→
k .

Cette décomposition est unique.

Propriété 4 :
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Propriété à démontrer : « Pour tout vecteur −→w de l’espace, il existe un unique triplet de réels(x; y ; z) tel que −→w =
x
−→
i + y

−→
j + z

−→
k . »

Soient −→w un vecteur de l’espace, O un point de l’espace et M le point tel que −→w = −−→
OM . On note M ′ le projeté de

M sur le plan de repère (O;−→ı ;−→ ) parallèlement à l’axe (Oz).

On a
−−→
OM = −−−→

OM ′+−−−→
M M ′. Or

−−−→
M M ′ et

−→
k sont colinéaires donc il existe un unique réel x tel que

−−−→
M ′M = z

−→
k . De plus,−−−→

OM ′ = x
−→
i + y

−→
j .

On a ainsi
−−→
OM =−−−→

OM ′+−−−→
M M ′ = x

−→
i + y

−→
j + z

−→
k , soit −→w = x

−→
i + y

−→
j + z

−→
k �

Démonstration :

Dans la base (O;−→ı ;−→ ;
−→
k ), on donne les vecteurs −→u = −→

i +−→
j +−→

k , −→v = −−→i +−→
j et −→w = −→

i +−→
k . Déterminer les coor-

données des vecteurs −→u , −→v et −→w puis montrer qu’ils sont linéairement indépendants. Que peut-on en déduire ?

1. Chacun des vecteurs est écrit en fonction de
−→
i ,

−→
j et

−→
k , on détermine donc directement les coordonnées en

analysant les coefficients :

−→u =
1

1
1

 , −→v =
−1

1
0

 et −→w =
1

0
1


2. Pour montrer que les vecteurs sont linéairement indépendants, on résout le système associé à l’équation vec-

torielle a−→u +b−→v + c−→w =−→
0 , on doit obtenir a = b = c = 0 :

a−→u +b−→v + c−→w =−→
0 ⇐⇒


a −b + c = 0

a +b = 0
a + c = 0

⇐⇒


a = 0
b = 0
c = 0

3. On applique la définition : Les vecteurs
−→
u ,

−→
v et

−→
w sont linéairement indépendants. ils forment donc une base

de l’espace.

Méthode 2 :

II. Droites et plans de l’espace

1. Droite de l’espace

Soient A un point de l’espace et −→u un vecteur non nul.

L’ensemble des points M tels que
−−−→
AM =λ−→u , avec λ ∈R, est une droite.(

A;−→u )
est un repère de cette droite. On dit que la droite est dirigé par −→u .

Définition 6:

Dans l’espace, deux droites peuvent être coplanaires ou non.
Si elles sont coplanaires, alors elles appartiennent à un même plan. Elles peuvent être sécantes ou parallèles
(strictement parallèles ou confondues).

A

d1

d2

Droites coplanaires sécantes :

un point d’intersection

d1 = d3

d2

Droites coplanaires parallèles :

aucun ou une infinité de points
d’intersection

d1
d2

Droites non coplanaires :

aucun point d’intersection

Définition 7: Position relative de deux droites

27 juillet 2020 Lycée René Cassin Page 3/8



Terminale Spécialité Mathématiques Année 2020 - 2021

2. Plans de l’espace

Soient A un point de l’espace, −→u et −→v deux vecteurs non colinéaires de l’espace.

L’ensemble des points M tels que
−−−→
AM =λ−→u +µ−→v , avec λ et µ des réels, est un plan de l’espace.(

A;−→u ;−→v )
est un repère du plan. On dit que la droite est dirigé par la base

(−→u ;−→v )
.

Définition 8:

Plans sécants :
un droite d’intersection

d

P1

P2

Plans parallèles strictement :
aucun point d’intersection

P1

P2

Plans parallèles confondus :
un plan d’intersection

P2 = P1

Définition 9: Position relative de deux plans

Droite et plan sécants :
un point d’intersection

A
d1

P

Droite et plan parallèles :
droite incluse dans le plan

d1
P

Droite et plan parallèles :
aucun point d’intersection

d1

P

Définition 10: Position relative de d’une droite et d’un plan

III. Parallélisme

1. Parallélisme d’une droite et d’un plan

Une droite d est parallèle à un plan P si, et seulement si, il existe une droite ∆ de P est parallèle à d .

Propriété 5 :

Propriété à démontrer : « Une droite d est parallèle à un plan P ⇐⇒ il existe une droite ∆ de P est parallèle à d . »

Le résultat est évidant lorsque d est incluse dans P .
Supposons que d n’est pas incluse dans P .

(⇒) : On suppose que d est parallèle à P . Soit un plan P ′, sécant à P , contenant d
et contenant un point A de P . On note ∆ leur intersection. Les droites d et ∆ sont
coplanaires car elles sont incluses dans P ′.
Supposons que d et ∆ sont séantes en un point B . B ∈ ∆ donc B ∈ P . or B ∈ d
donc B ∈ B ∩d , ce qui est contradictoire avec le fait que d et P sont strictement
parallèles. d et ∆ ne sont pas sécantes : elles sont parallèles.

∆

d

P

P ′

(⇐) : On suppose qu’il existe une droite ∆ incluse dans P telle que d//δ. Notons P ′le plan contenant ∆ et d et
supposons que d et P ne sont pas parallèles. Il existe alors un point R tel que R ∈ d ∩P .
Ainsi, R ∈P ∩P ′, donc R ∈∆, ce qui est contradictoire avec le fait que d et ∆ sont strictement parallèles. ainsi d et P

ne sont pas sécants : ils sont donc parallèles. �

Démonstration :
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Dans le cube ci-contre, on peux dire que la droite (AC ) est parallèle
au plan (EF H) car elle est parallèle à la droite (EG) ∈ (EF H)
Avec la même méthode, on pourra montrer que la droite (AH) est pa-
rallèle au plan (BCG), ou encore que la droite (EF ) est parallèle au
plan (AHG)

A
B

C
D

E F
G

HExemple 1:

2. Parallélisme de deux plans

Si un plan P contient deux droites d et d ′ sécantes parallèles au plan P ′ alors P et P ′ sont parallèles.

Propriété 6 :

Propriété à démontrer : « Si un plan P contient deux droites d et d ′ sécantes parallèles au plan P ′ alors P et P ′ sont
parallèles. »

(⇒) : Admis

(⇐) : Soient d et d ′ deux droites sécantes de P de vecteurs directeurs respectifs −→u et −→v .
On note ∆ et ∆′ deux droites sécantes de P ′ respectivement parallèles à d et d ′.(−→u ,−→v )

est donc une base de P . Or d et d ′ sont parallèles à∆ et∆′ donc
(−→u ,−→v )

est une base de P ′. Les plans ont donc
la même direction et sont donc parallèles. �

Démonstration :

Dans le cube ci-contre, on peux dire que la droite (EG) et (EF ) sont
sécantes et parallèles aux droites (AC ) et (AB). Les plans (E HG) et
(ADC ) sont donc parallèles.
Avec la même méthode, on pourra montrer que le plan (E AH) est
parallèle au plan (FGC ), ou encore que le plan (E AF ) est parallèle au
plan (D HC )

A
B

C

D

E F
G

HExemple 2:

3. Parallélisme de deux droites

Si deux plans sont parallèles alors tout plan sécant à l’un est sécant à l’autre et leurs intersections sont deux
droites parallèles.

Propriété 7 :

Propriété à démontrer : « Si deux plans sont parallèles alors tout plan sécant à l’un est sécant à l’autre et leurs inter-
sections sont deux droites parallèles. »

Soit P un plan sécant à P1distinct de P1.
Alors P est également sécant à P2 car sinon, on aurait P //P2 et P1//P2 d’où
P //P1, ce qui est absurde.
On note respectivement d1 et d2 les droites définies par d1 =P ∩P1 et d2 =
P ∩P2.
Ces droites sont incluses dans P donc elles sont soit parallèles, soit sécantes.

d1

d2

P1

P2

Si elles étaient sécantes, elles auraient un point d’intersection situé à la fois dans le plan P1 et dans le plan P2, ce qui
est impossible. Donc d1 et d2 sont parallèles. �

Démonstration :

Soient P1 et P2 deux plans sécants suivant une droite δ, si d1 ∈ P1 et d2 ∈ P2 sont deux droites parallèles
alors la droite δ est parallèle aux droites d1 et d2.

Propriété 8 : Théorème du toit
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Par hypothèse, les plans P1 et P2 sont sécants, donc leur intersection est une droite δ ; et les droites d1 et d2 sont
parallèles.
Donc : P1 ∩P2 = δ et d1//d2

Les droites d1 et d2 sont parallèles donc elles sont coplanaires.
Donc, il existe un plan P3 qui contient à la fois d1 et d2.
Mais alors d1 et δ sont contenues dans P1 ; et d2 et δ sont contenues dans P2 .
Donc : P1 ∩P3 = d1 et P2 ∩P3 = d2

d1

d2
δ

P2

P1
Montrons que d1// δ :
Supposons que d1 et δ ne soient pas parallèles.
Donc elles sont sécantes en un point A.
Comme A ∈ d1 ∩δ donc A ∈ d1 et A ∈ δ.

• A ∈ d1 et d1 =P1 ∩P3 donc A ∈P3.

• et A ∈ δ et δ=P1 ∩P2 donc A ∈P2. Ce qui donne, A ∈P2 ∩P3.

Par conséquent : A ∈ d2. Et comme A ∈ d1, on en déduit que d1 et d2 sont sécantes en A. Ce qui est absurde, contraire
à notre hypothèse.
Par conséquent les droites d1 et δ sont parallèles. Et comme d1 et d2 sont parallèles, on en déduit que les droites d2

et δ sont aussi parallèles.
Conclusion : L’intersection de P1 et P2 est une droite δ parallèle à la fois à d1 et d2. �

Démonstration :

Soient le cube ABC DEFG H et les points I et J représentés sur la figure ci contre.
Déterminer l’intersection des plans (I JF ) et (DCG).

Si deux plans sont sécants, alors leur intersection est une droite. On com-
mence donc par cherche un point commun a ces deux plans ou un théo-
rème à appliquer en fonction des hypothèses données par l’énoncé ou dé-
terminées au cours de la résolution. A

B

C

D

E F
G

H

I•

J•

Les points I et F appartiennent aux plans (ABF ) et (I JF ) donc la droite (I F ) est l’intersection de ces deux plans. Or le
plan (DCG) est parallèle au plan (ABF ) car ABC DEFG H est un cube.
Par ailleurs, lorsque deux plans sont parallèles, tout plan qui coupe l’un coupe l’autre et les intersections sont pa-
rallèles. J appartient au plan (DCG) donc J ∈ (I JF ) ∩ (DCG). Ainsi, la parallèle à (I F ) passant par J est la droite
d’intersection recherchée.

Méthode 3 :

IV. Repère de l’espace

1. Coordonnées d’un point de l’espace

Un repère de l’espace est défini par la donnée d’un point O de l’espace et d’une base
(−→ı ;−→ ;

−→
k

)
de l’espace.

Définition 11:

On considère un repère (O;−→ı ;−→ ;
−→
k ).

Pour tout point M de l’espace, il existe un unique triplet de réels
(
x; y ; z

)
tel

que
−−→
OM = x

−→
i + y

−→
j + z

−→
k .

x, y et z sont les coordonnées de M dans le repère (O;−→ı ;−→ ;
−→
k ). x

y

z

−→
i

−→
j

−→
k

M

Définition 12:

2. Opération sur les coordonnées

L’espace est rapporté à un repère (O;−→ı ;−→ ;
−→
k )
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On considère les points A
(
xA ; y A ; zA

)
et B

(
xB ; yB ; zB

)
.

Les coordonnées du vecteur
−→
AB sont

xB −xA

yB − y A

zB − zA

.

Propriété 9 :

Propriété à démontrer : « Les coordonnées du vecteur
−→
AB sont

xB −xA

yB − y A

zB − zA

. »

−→
AB =−−→

AO +−−→
OB =−−−→O A+−−→

OB =−xA
−→
i − y A

−→
j − zA

−→
k +xB

−→
i + yB

−→
j + zB

−→
k = (xB −xA)

−→
i + (

yB − y A
)−→

j + (zB − zA)
−→
k �

Démonstration :

On considère les points A
(
xA ; y A ; zA

)
et B

(
xB ; yB ; zB

)
.

Les coordonnées du du milieu I de [AB ] sont
( xA +xB

2
;

y A + yB

2
;

zA + zB

2

)
.

Propriété 10 :

Propriété à démontrer : « Les coordonnées du du milieu I de [AB ] sont
( xA +xB

2
;

y A + yB

2
;

zA + zB

2

)
. »

I est le milieu de [AB ]. Ainsi,
−→
AI = 1

2

−→
AB et donc

−−→
AO +−→

OI = 1

2

−→
AB .

−→
OI = 1

2

−→
AB −−−→

AO = 1

2

−−→
OB −−−→

AO = 1

2

−−→
O A+ 1

2

−−→
OB

= 1

2

(
xA

−→
i + y A

−→
j + zA

−→
k

)
+ 1

2

(
xB

−→
i + yB

−→
j + zB

−→
k

)
= xA +xB

2

−→
i + y A + yB

2

−→
j + zA + zB

2

−→
k

Donc I
( xA +xB

2
;

y A + yB

2
;

zA + zB

2

)
�

Démonstration :

On considère les points A(1;−1;2) et B(3;1;−4).

−→
AB

 3−1
1− (−1)
−4−2

. Donc
−→
AB

 2
2
−6

. Et I milieu de [AB ] a pour coordonnées

(
1+ (−1)

2
;
−1+1

2
;

2+ (−4)

2

)
. Donc I (0;0;−1)

Exemple 3:

On considère les vecteurs −→u
x−→u

y−→u
z−→u

, −→v
x−→v

y−→v
z−→v

 et α un nombre réel.

1. Les coordonnées du vecteur −→u +−→v sont

x−→u +x−→v
y−→u + y−→v
z−→u + z−→v

.

2. Les coordonnées du vecteur a−→u sont

ax−→u
ay−→u
az−→u



Propriété 11 :

1. Propriété à démontrer : «−→u +−→v
x−→u +x−→v

y−→u + y−→v
z−→u + z−→v

. »

−→u +−→v = x−→u
−→
i + y−→u

−→
j + z−→u

−→
k +x−→v

−→
i + y−→v

−→
j + z−→v

−→
k = (

x−→u +x−→v
)−→

i + (
y−→u + y−→v

)−→
j + (

z−→u + z−→v
)−→

k

�

Démonstration :
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2. Propriété à démontrer : « a−→u
ax−→u

ay−→u
az−→u

 »

a−→u = a
(
x−→u

−→
i + y−→u

−→
j + z−→u

−→
k

)
= ax−→u

−→
i +ay−→u

−→
j +az−→u

−→
k

�

Dans un repère (O;−→ı ;−→ ;
−→
k ), on donne les points E(−1;3;2), F (2;−1;3) et G(−1;0;1). Déterminer les coordonnées du

point M défini par
−−→
E M =−→

EF +2
−→
EG .

On pose M(x; y ; z). On détermine les coordonnées du vecteur
−−→
E M en fonction de x, y , et z et des coordonnées de

−→
EF

et
−→
EG . On traduit l’égalité vectorielle de l’énoncé par un système.

On pose M(x; y ; z).

On a
−−→
E M

x − (−1)
y −3
z −2

,
−→
EF

 3
−4
1

 et
−→
EG

 0
−3
−1

.

D’après l’égalité vectorielle,


x +1 = 3

y −3 =−4+2× (−3)
z −2 = 1+2× (−1)

soit


x = 2

y =−7
z = 1

Méthode 4 :
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