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% Chapitre 5 3%
Loi binomiale

I. Succession d’épreuves indépendantes

Définition 1:
Soit une succession de n épreuves indépendantes dont les univers associés sont respectivement Qp, Qo, ... Q.
Lunivers associé a cette succession de n épreuves est le produit cartésien Q1 x Qp x ... x Q.

Exemple 1:
7 p

On lance successivement et dans cet ordre trois dés équilibrés numérotés respectivementde 1 a4,dela6etdel a8
et on note les trois résultats obtenus.

¢ Lerésultat de chaque lancer n’a pas d’influence sur les autres donc les trois épreuves sont indépendantes.
¢ L'univers associé a cette succession de trois épreuves indépendantes est {1;2;3;4} x{1;2;3;4;5; 6} x{1; 2;3;4; 5;6; 7; 8}.

* {2;5;7}, par exemple est une issue associée a cette succession de trois épreuves indépendantes, elle correspond
al'obtention d'un 2 au premier dé, d'un 5 au deuxiéme et d'un 7 au troisieme.

@® Propriété 1 :
Soit une succession de n épreuves indépendantes.
La probabilité d’obtenir une issue (x1; x2;...; x,) est p((xl;xz; ...;xn)) = p(x1) x p(x2) X ... x p(xp).

7 Exemple 2:
7 p

1 1 1
X =X =—=—
6 8

Dans I'exemple précédent, la probabilité de {2;5;7} est p({2;5;7}) = p(2) x p(5) x p(7) = 192

N

M Remarque :
Dans le cas ou les expérience ne sont pas indépendantes, on les représente a I’aide d'un arbre (Voir le chapitre Pro-
babilité conditionnelle)

II. Loi de Bernoulli

1. Epreuve de Bernoulli

Définition 2:
On appelle épreuve de Bernoulli toute expérience aléatoire dont I'univers compte deux issues.
Traditionnellement I'une est appelée « succeés » et 'autre « échec ».

M Remarque :

Les dénomination de « succes » et d’ « échec » sont historiques et ne doivent pas étre interprétées systématiquement!

Définition 3:

On appelle loi de probabilité de Bernoulli (ou loi de Bernoulli) la loi de probabilité associée a une épreuve de
Bernoulli.

ATlissue « succes » on associe la valeur 1 de probabilité p et a I'issue « échec » on associe la valeur 0 de proba-
bilit€é g =1-p.

On dit alors que la loi de Bernoulli est une loi de Bernoulli de parameétre p.
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Une loi de Bernoulli est donc parfaitement définie par un tableau du type :

Xi 1 0
p(X =x;) p 1-p

2. Espérance et variance d’'une loi de Bernoulli

@® Propriété 2 :

g Lespérance d’'une loi de Bernoulli de parameétre p vaut E = p
La variance d’'une loi de Bernoulli de parametre p vaut V = p(1 - p) = pq

& Démonstration :
* Propriété a démontrer : « Lespérance d'une loi de Bernoulli de parametre p vaut E = p »

Dans le cous de premiere sur les variables aléatoires réelles, on a vu que :

n
E(X) = Zpix,- =p1x1+pexog+-+ppxy, = lxp+0x(1A-p) = p
i=1
Donc l'espérance d’'une loi de Bernoulli de parametre p vaut E = p. ]

* Propriété a démontrer : « La variance d'une loi de Bernoulli de parametre p vaut V = p(1-p) = pg»

Dans le cous de premiére sur les variables aléatoires réelles, on a vu que :

n
Var(X) = Z —EX)? = p1(x1 = EX))? + p2(x2 — EX))? + -+ p (0 — EX))?
= pX(l—p)2+(1—p)><(0—p)2 = px(1-pP+p*x(l-p)
= p-pd-p+p = pl-p
Donc la variance d'une loi de Bernoulli de parameétre p vaut V = p(1 — p). ]

IIlI. Loi binomiale

1. Schéma de Bernoulli

Définition 4:
On appelle schéma de Bernoulli, la répétition de n expériences de Bernoulli indépendantes de méme para-
metre p.

Définition 5:
A un schéma de Bernoulli, on associe la variable aléatoire X donnant le nombre de succes obtenus. X peut
prendre toutes les valeurs entieres inférieures ou égales a n.

La loi de probabilité de la variable aléatoire X est appelée loi binomiale de parametres » et p, on la note :
PB(n; p).

7 Exemple 3:
7 P

On effectue n lancers d'une pieéces de monnaie équilibrée. Chaque lancer est une expérience de Bernoulli de para-

1 1
metre > Le nombre de « PILE »obtenu a l'issue des 7 lancers suit une loi binomiale %8 (n; 5)
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@® Propriété 3 :
On considére une variable aléatoire X suivant une loi binomiale 2 (n; p)
Pour tout entier naturel k inférieur ou égala n,ona:

k . .
pX =k = (Z) pFa-p™* et pX<k=Y (?)P’(l— p)"!
i=0

' Démonstration : Exigible en fin de terminale
Propriété a démontrer: « p(X = k) = (Z) pk(l - p)”_k »

Sur un arbre représentant le schéma de Bernoulli associé a X, chaque chemin (de n branches) correspondant a
k succes « contient » k branches dont les pondérations sont p et n— k branches dont les pondérations sont 1 - p :la
probabilité lui étant associée est donc p*(1 — p)* .

Le nombre de chemins correspondant a k succes est égal au nombre de facons de placer k pondérations p sur
n

n branches soit ( &

). Il en résulte que la probabilité d’obtenir k succes est p(X = k) = (Z) pk(l - p)"‘k . ]

2. Représentation graphique

On représente la loi Binomiale a I'aide d'un diagramme en bétons, en indiquant les nombres de succés en abs-
cisses et les probabilités des événements {X = k} en ordonnées.

# Exemple 4:

Pour n = 10 et différentes valeurs de p.

0.3 034 034
0.25 0.25 +
02 0.2 T
0.15 0.15 +
01 0.1t
0.05 0.05 +
0123456 78 910 012345678910 6012345673910
Pour p=0.2 Pour p=0.5 Pour p=0.7

3. Espérance et variance d’une loi Binomiale

@® Propriété 4 :
g Lespérance de la loi binomiale 28(n; p) vaut E = np
La variance de la loi binomiale %(n; p) vaut V = np(1 — p)

A Remarque :

On obtient donc I'espérance et la variance d'une loi binomiale %8(n; p) a partir de I'espérance et de la variance d'une
loi de Bernoulli de parameétre p en les multipliant respectivement par n.
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