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f Chapitre 5 f

Loi binomiale

I. Succession d’épreuves indépendantes

Soit une succession de n épreuves indépendantes dont les univers associés sont respectivementΩ1,Ω2, ...Ωn .
L’univers associé à cette succession de n épreuves est le produit cartésienΩ1 ×Ω2 × ...×Ωn .

Définition 1:

On lance successivement et dans cet ordre trois dés équilibrés numérotés respectivement de 1 à 4, de 1 à 6 et de 1 à 8
et on note les trois résultats obtenus.

• Le résultat de chaque lancer n’a pas d’influence sur les autres donc les trois épreuves sont indépendantes.

• L’univers associé à cette succession de trois épreuves indépendantes est {1;2;3;4}×{1;2;3;4;5;6}×{1;2;3;4;5;6;7;8}.

• {2;5;7}, par exemple est une issue associée à cette succession de trois épreuves indépendantes, elle correspond
à l’obtention d’un 2 au premier dé, d’un 5 au deuxième et d’un 7 au troisième.

Exemple 1:

Soit une succession de n épreuves indépendantes.
La probabilité d’obtenir une issue (x1; x2; ...; xn) est p

(
(x1; x2; ...; xn)

)= p(x1)×p(x2)× ...×p(xn).

Propriété 1 :

Dans l’exemple précédent, la probabilité de {2;5;7} est p({2;5;7}) = p(2)×p(5)×p(7) = 1

4
× 1

6
× 1

8
= 1

192

Exemple 2:

Dans le cas ou les expérience ne sont pas indépendantes, on les représente à l’aide d’un arbre (Voir le chapitre Pro-
babilité conditionnelle)

Remarque :

II. Loi de Bernoulli

1. Épreuve de Bernoulli

On appelle épreuve de Bernoulli toute expérience aléatoire dont l’univers compte deux issues.
Traditionnellement l’une est appelée « succès » et l’autre « échec ».

Définition 2:

Les dénomination de « succès » et d’ « échec » sont historiques et ne doivent pas être interprétées systématiquement !

Remarque :

On appelle loi de probabilité de Bernoulli (ou loi de Bernoulli) la loi de probabilité associée à une épreuve de
Bernoulli.
A l’issue « succès » on associe la valeur 1 de probabilité p et à l’issue « échec » on associe la valeur 0 de proba-
bilité q = 1−p.
On dit alors que la loi de Bernoulli est une loi de Bernoulli de paramètre p.

Définition 3:
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Une loi de Bernoulli est donc parfaitement définie par un tableau du type :

xi 1 0

p(X = xi ) p 1−p

2. Espérance et variance d’une loi de Bernoulli

L’espérance d’une loi de Bernoulli de paramètre p vaut E = p
La variance d’une loi de Bernoulli de paramètre p vaut V = p(1−p) = pq

Propriété 2 :

• Propriété à démontrer : « L’espérance d’une loi de Bernoulli de paramètre p vaut E = p »

Dans le cous de première sur les variables aléatoires réelles, on a vu que :

E(X ) =
n∑

i=1
pi xi = p1x1 +p2x2 +·· ·+pn xn = 1×p +0× (1−p) = p

Donc l’espérance d’une loi de Bernoulli de paramètre p vaut E = p. �

• Propriété à démontrer : « La variance d’une loi de Bernoulli de paramètre p vaut V = p(1−p) = pq »

Dans le cous de première sur les variables aléatoires réelles, on a vu que :

V ar (X ) =
n∑

i=1
pi

(
xi −E(X )

)2 = p1
(
x1 −E(X )

)2 +p2
(
x2 −E(X )

)2 +·· ·+pn
(
xn −E(X )

)2

= p × (1−p)2 + (1−p)× (0−p)2 = p × (1−p)2 +p2 × (1−p)

= p(1−p)(1−p +p) = p(1−p)

Donc la variance d’une loi de Bernoulli de paramètre p vaut V = p(1−p). �

Démonstration :

III. Loi binomiale

1. Schéma de Bernoulli

On appelle schéma de Bernoulli, la répétition de n expériences de Bernoulli indépendantes de même para-
mètre p.

Définition 4:

A un schéma de Bernoulli, on associe la variable aléatoire X donnant le nombre de succès obtenus. X peut
prendre toutes les valeurs entières inférieures ou égales à n.
La loi de probabilité de la variable aléatoire X est appelée loi binomiale de paramètres n et p, on la note :
B(n; p).

Définition 5:

On effectue n lancers d’une pièces de monnaie équilibrée. Chaque lancer est une expérience de Bernoulli de para-

mètre
1

2
. Le nombre de « PILE »obtenu à l’issue des n lancers suit une loi binomiale B

(
n;

1

2

)
.

Exemple 3:
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On considère une variable aléatoire X suivant une loi binomiale B(n; p)
Pour tout entier naturel k inférieur ou égal à n, on a :

p(X = k) =
(
n
k

)
pk (1−p)n−k et p(X 6 k) =

k∑
i=0

(
n
i

)
p i (1−p)n−i

Propriété 3 :

Propriété à démontrer : « p(X = k) =
(
n
k

)
pk (1−p)n−k »

Sur un arbre représentant le schéma de Bernoulli associé à X , chaque chemin (de n branches) correspondant à
k succès « contient » k branches dont les pondérations sont p et n−k branches dont les pondérations sont 1−p : la
probabilité lui étant associée est donc pk (1−p)n−k .

Le nombre de chemins correspondant à k succès est égal au nombre de façons de placer k pondérations p sur

n branches soit

(
n
k

)
. Il en résulte que la probabilité d’obtenir k succès est p(X = k) =

(
n
k

)
pk (1−p)n−k . �

Démonstration : Exigible en fin de terminale

2. Représentation graphique

On représente la loi Binomiale à l’aide d’un diagramme en bâtons, en indiquant les nombres de succès en abs-
cisses et les probabilités des événements {X = k} en ordonnées.

Pour n = 10 et différentes valeurs de p.
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Exemple 4:

3. Espérance et variance d’une loi Binomiale

L’espérance de la loi binomiale B(n; p) vaut E = np
La variance de la loi binomiale B(n; p) vaut V = np(1−p)

Propriété 4 :

On obtient donc l’espérance et la variance d’une loi binomiale B(n; p) à partir de l’espérance et de la variance d’une
loi de Bernoulli de paramètre p en les multipliant respectivement par n.

Remarque :
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