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f Chapitre 9 f

Orthogonalité et distance dans l’espace

I. Orthogonalité dans l’espace

1. Deux vecteurs sont dits orthogonaux lorsque leurs parallèles respectives passant par un même point
sont perpendiculaires.

2. Deux vecteurs non nuls sont orthogonaux lorsque les droite dirigées par ces vecteurs sont orthogonales.

3. Une droite est orthogonale à un plan lorsqu’elle est orthogonale à toutes les droites de ce plan.

Définition 1:

Deux droites sont orthogonales si, et seulement si, leurs vecteurs directeurs respectifs sont orthogonaux.

Propriété 1 :

Propriété à démonter : « Deux droites sont orthogonales ⇐⇒ leurs vecteurs directeurs respectifs sont orthogonaux. »

(⇒) : Supposons que les droites d et d ′ soient orthogonales ; par définition, il existe deux droites ∆ et ∆′ respec-
tivement parallèles à d et d ′ passant par un point A telles que ∆ et ∆′ soient perpendiculaires. comme deux droites
parallèles ont les mêmes vecteurs directeurs, on en déduit que les vecteurs directeurs de d et d ′ sont orthogonaux.

(⇐) : Considérons deux vecteurs orthogonaux. Alors il existe deux droites ∆ et ∆′ dirigées par ces vecteurs et
passant pas un même point qui sont perpendiculaires. ∆ et ∆′ sont donc respectivement parallèles à d et d ′.
On a bien d ⊥ d ′. �

Démonstration :

Un droite est orthogonale à un plan si, et seulement si, un vecteur directeur de la droite est orthogonal à une
base de ce plan.

Propriété 2 :

Propriété à démonter : « Un droite est orthogonale à un plan ⇐⇒ un vecteur directeur de la droite est orthogonal à
une base de ce plan. »

Soient d une droite de vecteur directeur −→u et P un plan dirigé par deux vecteurs −→v et −→w .

(⇒) : On suppose que d ⊥ P . Une droite est orthogonale à un plan si elle est orthogonale à toutes les droites de
ce plan.
Le vecteur −→u est orthogonal à tous les vecteurs du plan puisqu’il est orthogonal au plan.
Comme −→v et −→w sont des vecteurs directeurs du plan, alors −→u est orthogonal à −→v et à −→w .
On vient de démontrer que si une droite d est orthogonale à un plan, alors un vecteur directeur de cette droite est
orthogonal à une base du plan.

(⇐) : On suppose que le vecteur −→u est orthogonal aux vecteurs −→v et −→w .
On a −→u · (λ−→v +−→w ) =λ−→u ·−→v +−→u ·−→w = 0 puisque −→u est orthogonal à −→v et à −→w . Donc −→u est orthogonal à λ−→v +−→w .
Comme −→u est orthogonal à toute combinaison linéaire de −→v et −→w qui dirigent le plan. On en déduit qu’il est ortho-
gonal à tout vecteur du plan. La droite de vecteur directeur −→u est donc orthogonale au plan. �

Démonstration :

On considère une droite orthogonale à un plan. Tout vecteur directeur de cette droite est appalé vecteur nor-
mal au plan.

Définition 2:
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Une droite est orthogonale à un plan si elle est orthogonale à deux droites sécantes de ce plan.

Propriété 3 : Admise

ABC DE est un pyramide à base carrée telle que les faces issues de E sont des triangles isocèles. On note O le centre
de carré ABC D . Montrer que la droite (EO) est orthogonale au plan (ABC ).

1. On se place dans des configuration planes connues : Comme les triangles E AB et E AD sont isocèles en E , on
peut en déduire que EB = ED et donc le triangle EBD est isocèle en E .

2. On cherche deux droites sécantes au plan (ABC ) et on démontre qu’elles sont orthogonales à la droite (EO) : O
est le milieu du segment [BD], donc la médiane (EO) est la médiatrice de [BD]. Ainsi (EO) ⊥ (BD). De la même
façon, comme AEC est isocèle en E , on en déduit que (EO) ⊥ (AC ).

Par conséquent, (EO) ⊥ (ABC )

Méthode 1 :

II. Produit scalaire dans l’espace

Soit
−→
u et

−→
v deux vecteurs de l’espace. A, B et C trois points d’un plan P tels que

−→
u =−−→

AB et
−→
v =−−→

AC .

On appelle produit scalaire de l’espace de
−→
u et

−→
v , le produit

−→
u .

−→
v

égal au produit scalaire
−−→
AB .

−−→
AC dans le plan P .

−→
u

A
B−−→

AB

−→
v

C −−→
AC

On a ainsi :

• Si
−→
u ou

−→
v est un vecteur nul,

−→
u ·−→v = 0

•
−→
u ·−→v = ||−→u ||× ||−→v ||×cos

(−→
u ,

−→
v

)

Définition 3:

ABC DEFG H est un cube d’arête a.

−−→
AB .

−−→
DG = −−→

AB .
−−→
AF

= ||−−→AB ||.||−−→AF ||×cos
(−−→

AB ,
−−→
AF

)
= a ×p

2a ×
p

2

2
= a2

A
B

C

D

E F
G

H
Exemple 1:

Soient
−→
u ,

−→
v et

−→
w trois vecteurs et λ un réel. Le produit scalaire est :

• symétrique : −→u ·−→v =−→v ·−→u
• linéaire à gauche :

(−→u +λ−→v ) ·−→w =−→u ·−→w +λ×−→v ·−→w
• linéaire à droite : −→u · (λ−→v +−→w )=λ×−→u ·−→v +−→u ·−→w

Propriété 4 :

On considère les vecteurs −→u
x

y
z

, −→v
x ′

y ′
z ′

 et −→w
a

b
c


• Propriété à démontrer : «−→u ·−→v =−→v ·−→u »

Comme cos
(−→u ,−→v )= cos

(−→v ,−→u )
, alors : ‖−→u ‖×‖−→v ‖cos

(−→u ,−→v )= ‖−→v ‖×‖−→u ‖cos
(−→v ,−→u )

et donc −→u ·−→v =−→v ·−→u . �

• Propriété à démontrer : «
(−→u +λ−→v ) ·−→w =−→u ·−→w +λ×−→v ·−→w »

Démonstration :
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Soit λ ∈R. D’une part, λ−→u
λx
λy
λz

 donc (λ−→u +−→v )

λx +x ′
λy + y ′
λz + z ′

 et ainsi :

(λ−→u +−→v ) ·−→w = (λx +x ′)a + (λy + y ′)b + (λz + z ′)c.

D’autre part, λ−→u ·−→w +−→v ·−→w =λ(xa + yb + zc)+x ′a + y ′b + z ′c = (λx +x ′)a + (λy + y ′)b + (λz + z ′)c.
On a ainsi démontré l’égalité demandée. �

Soient deux vecteurs
−→
u et

−→
v , on a :

−→
u · −→v = 1

2

(∥∥∥−→u +−→
v

∥∥∥2 −
∥∥∥−→u ∥∥∥2 −

∥∥∥−→v ∥∥∥2
)

et
−→
u · −→v = 1

2

(∥∥∥−→u ∥∥∥2 +
∥∥∥−→v ∥∥∥2 −

∥∥∥−→u −−→
v

∥∥∥2
)

Propriété 5 : Formule de polarisation

Propriété à démontrer : «
−→
u · −→v = 1

2

(∥∥∥−→u +−→
v

∥∥∥2 −
∥∥∥−→u ∥∥∥2 −

∥∥∥−→v ∥∥∥2
)

»

On a
(−→u −−→v )2 = ∥∥−→u ∥∥2 −2×−→u ·−→v +∥∥−→v ∥∥2

et
(−→u +−→v )2 = ∥∥−→u ∥∥2 +2×−→u ·−→v +∥∥−→v ∥∥2

.

On en déduit alors que 2×−→u ·−→v = ∥∥−→u ∥∥2 +∥∥−→v ∥∥2 − (−→u −−→v )2
et donc −→u ·−→v = 1

2

(∥∥−→u ∥∥2 +∥∥−→v ∥∥2 −∥∥−→u −−→v ∥∥2
)

et, d’autre part, que 2×−→u ·−→v = (−→u +−→v )2 −∥∥−→u ∥∥2 −∥∥−→v ∥∥2
et donc −→u ·−→v = 1

2

(∥∥−→u +−→v ∥∥2 −∥∥−→u ∥∥2 −∥∥−→v ∥∥2
)
. �

Démonstration :

On considère deux vecteurs −→u et −→v tels que
∥∥−→u ∥∥ = 3 et

∥∥−→v ∥∥ = 5. De plus, on donne
∥∥−→u −−→v ∥∥ = p

22. Quelle est la
mesure principale de l’angle

(−→u ;−→v )
? Arrondir le résultat au degré près.

On a, d’une part,
−→
u · −→v = 1

2

(∥∥∥−→u ∥∥∥2 +
∥∥∥−→v ∥∥∥2 −

∥∥∥−→u −−→
v

∥∥∥2
)
= 1

2
(9+25−22) = 6.

D’autre part,
−→
u ·−→v = ||−→u ||× ||−→v ||×cos

(−→
u ,

−→
v

)
donc 6 = 3×5×cos

(−→
u ,

−→
v

)
d’où cos

(−→
u ,

−→
v

)
= 6

15
= 2

5

Donc
(−→

u ,
−→
v

)
= arccos

(
2

5

)
' 66˚

Exemple 2:

Deux vecteurs non nuls sont orthogonaux si et seulement si leur produit scalaire est nul.

−→
u ⊥−→

v ⇐⇒ −→
u ·−→v = 0

Propriété 6 :

Propriété à démontrer : «
−→
u ⊥−→

v ⇐⇒ −→
u ·−→v = 0 »

On doit démontrer une équivalence. Pour ce faire, nous allons démontrer l’implication puis la réciproque :

• Implication (⇒) : On suppose que les deux vecteurs, non nuls,
−→
u et

−→
v sont orthogonaux.

(
−→
u ,

−→
v ) = π

2

cos(
−→
u ,

−→
v ) = cos

(π
2

)
= 0∥∥∥−→u ∥∥∥ ×

∥∥∥−→v ∥∥∥ ×cos(
−→
u ,

−→
v ) = 0

−→
u ·−→v = 0

Donc le produit scalaire de
−→
u et

−→
v est nul.

• Réciproque (⇐) : On suppose que le produit scalaire des deux vecteurs, non nuls,
−→
u et

−→
v est nul.

−→
u ·−→v = 0∥∥∥−→u ∥∥∥ ×

∥∥∥−→v ∥∥∥ ×cos(
−→
u ,

−→
v ) = 0

Démonstration :
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Un produit de facteur est nul si et seulement si un de ses facteurs est nul.

∥∥∥−→u ∥∥∥ = 0

−→
u = 0

Impossible car
−→
u est

non nul.

∥∥∥−→v ∥∥∥ = 0

−→
v = 0

Impossible car
−→
v est

non nul.

cos(
−→
u ,

−→
v ) = 0

(
−→
u ,

−→
v ) = π

2
+2kπ ou (

−→
u ,

−→
v ) = −π

2
+2kπ

avec k ∈Z

Donc les vecteurs
−→
u et

−→
v sont orthogonaux.

On vient de démontrer l’implication puis la réciproque donc l’équivalence est vraie :
−→
u ⊥−→

v ⇐⇒ −→
u ·−→v = 0 �

On considère un cube ABC DEFG H . Montrons que les droite (BG) et (EC ) sont orthogonales.

1. On cherche à calculer un produit scalaire : Calculons
−−→
BG ·−→EC .

2. On décompose l’un des vecteurs à l’aide de la relation de Chasles de facon

à ce que les expressions se simplifient : On a
−→
EC = −→

EF +−→
FC donc

−−→
BG · −→EC =

−−→
BG ·

−−−−−−→−→
EF +−→

FC =−−→
BG ·−→EF +−−→

BG ·−→FC .

3. On montre que le produit scalaire est nul : Les diagonales d’un carré sont

perpendiculaires donc
−−→
BG ·−→FC = 0 et (EF ) ⊥ (BFC ) donc

−−→
BG ·−→EF = 0

Ainsi
−−→
BG ·−→EC = 0 donc les droites (BG) et (EC ) sont orthogonales. A

B

C

D

E F
G

H

Méthode 2 :

III. Distance dans l’espace

Une base orthonormée de l’espace est la donnée de trois vecteurs linéairement indépendant
−→
i ,

−→
j et

−→
k tels

que
∥∥∥−→i ∥∥∥ =

∥∥∥−→j ∥∥∥ =
∥∥∥−→k ∥∥∥ = 1 et

−→
i ·−→j =−→

j ·−→k =−→
i ·−→k = 0

Définition 4:

Dans un repère orthonormé (O;−→ı ;−→ ;
−→
k ), pour −→u

x
y
z

 et A
(
xA ; y A ; zA

)
et B

(
xB ; yB ; zB

)
, on a :

∥∥∥−→u ∥∥∥ =
√

x2 + y2 + z2 et AB =
√

(xB −xA)2 + (yB − y A)2 + (zB − zA)2

Propriété 7 :

Propriété à démontrer : «
∥∥∥−→u ∥∥∥ =

√
x2 + y2 + z2 »

Comme
−−→
OM =−→u , on a M(x; y ; z). On considère les points A(x;0;0), C (0; y ;0), D(0;0; z),B(x; y ;0), E(x;0; z) et G(0; y ; z).

Le volume O ABC DE MG est un pavé droit.
Dans le triangle O AB rectangle en A, on a O A = x et AB = y et, d’après le théorème de Pythagore, OB =

√
x2 + y2.

Comme la droite (B M) est orthogonale à la face O ABC , on en déduit en particulier que (B M)⊥(OB), et donc OB M
est rectangle en B .

Comme B M = z, on déduit du théorème de Pythagore appliqué au triangle OB M rectangle en B que OM 2 =
√

x2 + y22+
z2, d’où OM =

√
x2 + y2 + z2.

Comme OM = ∥∥−→u ∥∥, on a bien
∥∥−→u ∥∥=

√
x2 + y2 + z2. �

Démonstration :
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Soit
−→
u

x
y
z

 et
−→
v

x ′
y ′
z ′

 deux vecteurs de l’espace muni d’un repère orthonormé
(
O,

−→
ı ,

−→
 ,

−→
k

)
. On a :

−→
u ·−→v = xx ′+ y y ′+ zz ′

Propriété 8 :

Propriété à démontrer : «
−→
u ·−→v = xx ′+ y y ′+ zz ′ »

−→
u ·−→v =

(
x
−→
i + y

−→
j + z

−→
k

)
·
(
x ′−→i + y ′−→j + z ′−→k

)
= xx ′−→i ·−→i +x y ′−→i ·−→j +xz ′−→i ·−→k + y x ′−→j ·−→i + y y ′−→j ·−→j + y z ′−→j ·−→k + zx ′−→k ·−→i + z y ′−→k ·−→j + zz ′−→k ·−→k
= xx ′+ y y ′+ zz ′

Car, on a dans le plan définit par le couple
(−→

i ,
−→
j

)
:
−→
i ·−→i = ||−→i ||2 = 1,

−→
j ·−→j = ||−→j ||2 = 1 et

−→
i ·−→j =−→

j .
−→
i = 0 �

Démonstration :

On retrouve la propriété de la norme : ||−→u ||2 =−→
u ·−→u = xx + y y + zz = x2 + y2 + z2

Remarque :

On considère le repère de l’espace
(
C,

−−→
C B ,

−−→
C D ,

−−→
CG

)
.

Alors :
−−→
C E

1
1
1

 et
−−→
D I

 1−0
0,5−1

0−0

 soit
−−→
D I

 1
−0,5

0

.

Alors
−−→
C E ·−−→D I = 1×1+1×−0,5+1×0 = 0,5.

Les vecteurs
−−→
C E et

−−→
D I ne sont pas orthogonaux

A
B

C

D

E F
G

H

I
•

Exemple 3:
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