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f Chapitre 15 f

Géométrie repérée dans l’espace

L’espace est rapporté à un repère (O;−→ı ;−→ ;
−→
k )

I. Équation paramétrique de droite

Soit un point A(xA ; y A ; zA) appartenant à une droite∆ de vecteur directeur −→u
a

b
c

. M(x; y ; z) appartient à∆ si,

et seulement si, il existe t ∈R tel que


x = xA +a × t
y = y A +b × t
z = zA + c × t

Propriété 1 :

Propriété à démontrer : « M(x; y ; z) appartient à ∆ si, et seulement si, il existe t ∈R tel que


x = xA +a × t
y = y A +b × t
z = zA + c × t

»

M ∈∆⇐⇒−−→
AM et −→u sont colinéaires ⇐⇒ il existe un réel t tel que

−−→
AM = t−→u .

Or
−−→
AM

x −xA

y − y A

z − zA

 donc M ∈∆⇐⇒ il existe t ∈R tel que


x −xA = a × t
y − y A = b × t
z − zA = c × t

soit


x = xA +a × t
y = y A +b × t
z = zA + c × t

Démonstration :

Le système d’équations


x = xA +a × t
y = y A +b × t
z = zA + c × t

avec t ∈R est une représentation paramétrique de la droite ∆.

Définition 1:

On se place dans un repère (O;−→ı ;−→ ;
−→
k ).

1. Donner une représentation paramétrique de la droite (AB) où A(1;−3;1) et B(−1;1;4).

2. Les points C (−1;1;4) et D(2;4;2) appartiennent-ils à (AB) ?

1. Le vecteur
−→
AB est un vecteur directeur de (AB). On détermine alors ses coordonnées puis on applique la défi-

nition du cours :

−→
AB

−2
4
3

 donc, d’après le résultat du cours :


x = 1−2× t
y =−3+4× t
z = 1+3× t

où t ∈R.

2. On remplace x, y et z par les coordonnées du point C . Si le système admet une solution, alors C appartient à la
droite. Sinon, il n’appartient pas à la droite :

Pour C (−1;1;4), on a


−1 = 1−2× t
1 =−3+4× t
4 = 1+3× t

soit


t = 1
t = 1
t = 1

Le système admet une solution donc le point C ∈ (AB).

Pour D(2;4;2), on a


2 = 1−2× t
4 =−3+4× t
2 = 1+3× t

soit


t =−1

2
t = 7

4
t = 1

3
Le système n’admet pas de solution donc le point
D ∉ (AB).

Méthode 1 :
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II. Équation cartésienne

1. Équation cartésienne de sphère

Dans un repère orthonormé, une équation de la sphère de centreΩ(a;b;c) et de rayon R est

(x −a)2 + (y −b)2 + (z − c)2 = R2

Propriété 2 :

Propriété à démontrer : « L’équation de la sphère de centreΩ(a;b;c), de rayon R est (x−a)2+ (y −b)2+ (z−c)2 = R2. »

Dans un repère orthonormé, on considère un point M(x; y ; z) de la sphère S . La distance entre M et Ω est donc
égale à R.

d(M ;Ω) = R√
(x −xΩ)2 + (y − yΩ)2 + (z − zΩ)2 = R

(x −xΩ)2 + (y − yΩ)2 + (z − zΩ)2 = R2
�

Démonstration :

2. Équation cartésienne du plan

On se place dans un repère orthonormé de l’espace.

1. Un plan de vecteur normal
−→
n

a
b
c

 non nul admet une équation de la forme ax +by + cz +d = 0.

2. Soient a,b,c,d quatre réels, avec (a;b;c) 6= (0;0;0). Alors ax +by +cz +d = 0 est l’équation d’un plan de

vecteur normal
−→
n

a
b
c

.

Propriété 3 :

Propriété à démontrer : « Un plan de vecteur normal
−→
n

a
b
c

 non nul admet une équation de la forme ax+by+cz+d =

0. »

1. Soit A(x0; y0; z0) un point du plan P et M(x; y ; z) un point de l’espace.

Alors
−−−→
AM

x −x0

y − y0

z − z0

, et
−−−→
AM .

−→
n = a(x −x0)+b(y − y0)+ c(z − z0).

M ∈P ⇐⇒ −−−→
AM .

−→
n = 0

⇐⇒ a(x −x0)+b(y − y0)+ c(z − z0) = 0

⇐⇒ ax +by + cz − (ax0 +by0 + cz0) = 0

En posant d =−(ax0 +by0 + cz0), le plan P est caractérisé par l’équation ax +by + cz +d = 0.

2. Réciproquement, on considère l’ensemble (E) des points M(x; y ; z) tels que ax +by +cz +d = 0, avec (a;b;c) 6=
(0;0;0).

Comme a, b et c ne sont pas tous nuls, on peut supposer par exemple que a 6= 0

Il est clair que le point A(−d

a
;0;0) appartient à (E) (donc (E) est non vide).

Démonstration :
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L’équation de (E) ax +by + cz +d = 0 équivaut à a

(
x + d

a

)
+by + cz = 0, c’est-à-dire

−−−→
AM .

−→
n = 0 où

−→
n

a
b
c

.

Donc l’ensemble (E) est le plan passant par A et de vecteur
−→
n

a
b
c

. �

1. Une équation du plan de vecteur normal −→n
2

1
2

 et passant par A(1;0;1) est 2x + y +2z −4 = 0.

2. Le plan d’équation −3x +2y − z +5 = 0 admet pour vecteur normal le vecteur −→n
−3

2
−1


Exemple 1:

L’espace est muni d’un repère orthonormé (O;−→ı ;−→ ;
−→
k ). On considère le plan P d’équation 2x +3y −5z −2 = 0 et le

point I (1;0;0). Donner alors un vecteur normal de ce plan et indiquer si I appartient à ce plan.

1. On identifie alors les coordonnées d’un vecteur normal avec les coefficients de x, y et z : un vecteur normal au

plan P est donné par −→n
 2

3
−5

.

2. Pour vérifier si un point appartient à un plan, on teste si ses coordonnées vérifient l’équation donnée du plan :

2×1+3×0−5×0−2 = 2−2 = 0

Les coordonnées de I vérifient bien l’équation du plan P , donc I est un point de ce plan.

Méthode 2 :

III. Projection orthogonale

1. Projection orthogonale d’un point sur un plan ou sur une droite

On considère un plan P de l’espace dont on connait un vecteur normal −→n et un point M extérieur au plan P .
Le projeté orthogonal de M sur P est l’intersection du plan et de la droite de vecteur directeur −→n passant par
M .

Définition 2:

On considère une droite d de vecteur directeur −→u et un point M extérieur à cette droite ; le projeté orthogonal
de M sur d est l’intersection du plan normal à −→u passant par M avec la droite d

Définition 3:

Le point M ′ est le projeté orthogonal
du point M sur le plan P (en bleu). M ′

M

N ′ N

−→u
−→n

d

P

Le point N ′ est le projeté orthogonal
du point N sur la droite d .

Exemple 2:

2. Distance d’un point à un plan ou une droite

Soient P un plan de l’espace et A un point.
La distance du point A au plan P est la plus petite des longueurs AM où M ∈P .

Définition 4:
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Si on note H le projeté orthogonale de A sur le plan P , alors d(A,P = AH .

Propriété 4 :

Propriété à démontrer : « d(A,P = AH »

Soit M un point quelconque du plan P . Pour tout M 6= H , le triangle AH M est rectangle en H , donc AM > AH . Ainsi,
AH est bien la plus petite des longueurs de d(A,P ) = AH . �

Démonstration :

Soient P le plan d’équation cartésienne ax+by+cz+d = 0 et A
(
xA ; y A ; zA

)
un point. Si on note −→n un vecteur

normal de P et M(x; y ; z) un point de P , alors :

d(A,P ) = |−−→AM ·−→n |
‖−→n ‖ = |axA +by A + czA +d |√

a2 +b2 + c2

Propriété 5 :

Propriété à démontrer : « d(A,P ) = |−−→AM ·−→n |
‖−→n ‖ = |axA +by A + czA +d |√

a2 +b2 + c2
»

On a
−−→
AM ·−→n =

(−−→
AH +−−→

H M
)
·−→n . Or, comme H et M sont deux points du plan P et que −→n est un vecteur orthogonal à

ce plan, on en déduit que
−−→
H M ·−→n = 0 et donc

−−→
AM ·−→n =−−→

AH ·−→n .

En utilisant la formule on obtient
−−→
AH ·−→n = AH ×‖−→n ‖×cos

(−−→
AH ;−→n

)
.

L’angle
(−−→

AH ;−→n
)

est soit nul soit plat puisque ces deux vecteurs sont colinéaires.

D’après la question précédente, cos
(−−→

AH ;−→n
)
=±1 et donc on a

∣∣∣−−→AH ·−→n
∣∣∣= AH ×‖−→n ‖.

En utilisant les coordonnées des vecteurs on obtient
−−→
AM ·−→n = (x −xA)×a+ (y − y A)×b+ (z − zA)×c = ax +bc +cz −

a ×xA −b × y A − c × zA =−d −a ×xA −b × y A − c × zA .

La distance entre le point A et le plan est, par définition, la distance AH . On a AH =

∣∣∣−−→AH ·−→n
∣∣∣

‖−→n ‖ . Comme
−−→
AM ·−→n =−−→

AH ·−→n

on en déduit que d(A;P ) = AH = |xA ×a + y A ×b + zA × c +d |
‖−→n ‖ .

Démonstration :

La distance entre A(−1;3;2) et P : x −3y +2z −4 = 0 est :

d(A,P ) = |axA +by A + czA +d |√
a2 +b2 + c2

= |−1−3×3+2×2−4|√
12 + (−3)2 +22

= 10p
14

= 10
p

14

14

Exemple 3:
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